【327727】2022年辽宁省大连市中考数学真题
绝密·启用前
2022年辽宁省大连市中考数学真题
题号 |
一 |
二 |
三 |
总分 |
得分 |
|
|
|
|
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
|
一、选择题 |
1.-2的绝对值是( )
A.2
B.
C.
D.
2.下列立体图形中,主视图是圆的是( )
A.
B.
C.
D.
3.下列计算正确的是( )
A.
B.
C.
D.
4.如图,平行线
,
被直线
所截,
平分
,若
,则
的度数是( )
A.
B.
C.
D.
5.六边形的内角和是( )
A.180°
B.360°
C.540°
D.720°
6.不等式
的解集是( )
A.
B.
C.
D.
7.一家鞋店在一段时间内销售了某种女鞋20双,各种尺码鞋的销售量如表所示.
尺码/ |
22.5 |
23 |
23.5 |
24 |
24.5 |
销售量/双 |
1 |
4 |
6 |
8 |
1 |
则所销售的女鞋尺码的众数是( )
A.
B.
C.
D.
8.若关于x的一元二次方程
有两个相等的实数根,则c的值是( )
A.36
B.9
C.6
D.
9.如图,在
中,
,分别以点A和点C为圆心,大于
的长为半径作弧,两弧相交于M,N两点,作直线
,直线
与
相交于点D,连接
,若
,则
的长是( )
A.6
B.3
C.1.5
D.1
10.汽车油箱中有汽油
,如果不再加油,那么油箱中的油量y(单位:L)随行驶路程x(单位:
)的增加而减少,平均耗油量为
.当
时,y与x的函数解析式是( )
A.
B.
C.
D.
|
二、填空题 |
11.方程
的解是_______.
12.不透明袋子中装有2个黑球,3个白球,这些球除了颜色外无其他差别,从袋子中随机摸出1个球,“摸出黑球”的概率是_______.
13.如图,在平面直角坐标系中,点A的坐标是
,将线段
向右平移4个单位长度,得到线段
,点A的对应点C的坐标是_______.
14.如图,正方形
的边长是
,将对角线
绕点A顺时针旋转
的度数,点C旋转后的对应点为E,则
的长是____________(结果保留
).
15.我国古代著作《九章算术》中记载了这样一个问题:“今有共买豕,人出一百,盈一百;人出九十,适足.”其大意是:“今有人合伙买猪,每人出100钱,则会多出100钱;每人出90钱,恰好合适.”若设共有x人,根据题意,可列方程为____________.
16.如图,对折矩形纸片
,使得
与
重合,得到折痕
,把纸片展平,再一次折叠纸片,使点A的对应点
落在
上,并使折痕经过点B,得到折痕
.连接
,若
,
,则
的长是____________
.
|
三、解答题 |
17.计算
.
18.为了解某初级中学落实《中共中央国务院关于全面加强新时代大中小学劳动教育的意见》的实施情况,调查组从该校全体学生中随机抽取部分学生,调查他们平均每周劳动时间t(单位:h),并对数据进行整理,描述和分析,以下是根据调查结果绘制的统计图表的一部分.
平均每周劳动时间频数统计表
平均每周劳动时间 |
频数 |
频率 |
|
3 |
|
|
a |
0.12 |
|
37 |
b |
|
|
0.35 |
|
|
|
合计 |
c |
|
根据以上信息,回答下列问题∶
(1)填空:
______,
______,
_____;
(2)若该校有1000名学生,请估计平均每周劳动时间在
范围内的学生人数.
19.如图,四边形
是菱形,点E,F分别在
上,
.求证
.
20.2022年北京冬奥会吉祥物冰墩墩和冬残奥会吉祥物雪容融深受大家喜爱.已知购买1个冰墩墩毛绒玩具和2个雪容融毛绒玩具用了400元,购买3个冰墩墩毛绒玩具和4个雪容融毛绒玩具用了1000元.这两种毛绒玩具的单价各是多少元?
21.密闭容器内有一定质量的二氧化碳,当容器的体积V(单位:
)变化时,气体的密度
(单位:
)随之变化.已知密度
与体积V是反比例函数关系,它的图象如图所示,当
时,
.
(1)求密度
关于体积V的函数解析式;
(2)若
,求二氧化碳密度
的变化范围.
22.如图,莲花山是大连著名的景点之一,游客可以从山底乘坐索道车到达山项,索速车运行的速度是1米/秒,小明要测量莲花山山顶白塔的高度,他在索道A处测得白塔底部B的仰角的为
,测得白塔顶部C的仰角的为
.索道车从A处运行到B处所用时间的为5分钟.
(1)索道车从A处运行到B处的距离约为________米;
(2)请你利用小明测量的数据,求白塔
的高度(结果取整数).(参考数据:
)
23.
是
的直径,C是
上一点,
,垂足为D,过点A作
的切线,与
的延长线相交于点E.
(1)如图1,求证
;
(2)如图2,连接
,若
的半径为2,
,求
的长.
24.如图,在
中,
,
,点D在
上,
,连接
,
,点P是边
上一动点(点P不与点A,D,C重合),过点P作
的垂线,与
相交于点Q,连接
,设
,
与
重叠部分的面积为S.
(1)求
的长;
(2)求S关于x的函数解析式,并直接写出自变量x的取值范围.
25.综合与实践
问题情境:
数学活动课上,王老师出示了一个问题:如图1,在
中,D是
上一点,
.求证
.
独立思考:
(1)请解答王老师提出的问题.
实践探究:
(2)在原有问题条件不变的情况下,王老师增加下面的条件,并提出新问题,请你解答.“如图2,延长
至点E,使
,
与
的延长线相交于点F,点G,H分别在
上,
,
.在图中找出与
相等的线段,并证明.”
问题解决:
(3)数学活动小组河学时上述问题进行特殊化研究之后发现,当
时,若给出
中任意两边长,则图3中所有已经用字母标记的线段长均可求,该小组提出下面的问题,请你解答.“如图3,在(2)的条件下,若
,
,
,求
的长.”
26.在平面直角坐标系中,抛物线
与x轴相交于点A,B(点A在点B的左侧),与y轴相交于点C,连接
.
(1)求点B,点C的坐标;
(2)如图1,点
在线段
上(点E不与点B重合),点F在y轴负半轴上,
,连接
,设
的面积为
,
的面积为
,
,当S取最大值时,求m的值;
(3)如图2,抛物线的顶点为D,连接
,点P在第一象限的抛物线上,
与
相交于点Q,是否存在点P,使
,若存在,请求出点P的坐标;若不存在,请说明理由.
参考答案
1.A
【解析】
根据数轴上某个数与原点的距离叫做这个数的绝对值的定义进行求解即可.
在数轴上,点-2到原点的距离是2,所以-2的绝对值是2,
故选:A.
2.D
【解析】
分别得出棱柱,圆柱,圆锥,球体的主视图,得出结论.
解:棱柱的主视图是矩形(中间只有一条线段),不符合题意;
圆柱的主视图是矩形,不符合题意;
圆锥的主视图是等腰三角形,不符合题意;
球体的主视图是圆,符合题意;
故选:D.
3.C
【解析】
分别化简二次根式判断即可.
A、
无解,故该项错误,不符合题意;
B、
,故该项错误,不符合题意;
C、
,故该项正确,符合题意;
D、
,故该项错误,不符合题意;
故选:C.
4.A
【解析】
先根据角平分线的性质可得∠GFD=
,再由平行线的性质可得∠EGF=∠GFD=
.
解:∵∠EFD=
,且FG平分∠EFD
∴∠GFD=
∠EFD=
∵AB∥CD
∴∠EGF=∠GFD=
故选A
5.D
【解析】
根据多边形的内角和公式解答即可.
解:六边形的内角和是:
;
故选:D.
6.D
【解析】
移项再合并同类项即可把未知数的系数化“1”,从而可得答案.
解:
,
移项,合并同类项得:
故选D
7.C
【解析】
根据众数的定义进行求解即可.
解:由表格可知尺码为24cm的鞋子销售量为8,销售量最多,
∴众数为24cm,
故选C.
8.B
【解析】
由关于x的一元二次方程
有两个相等的实数根,建立方程
,再解方程即可.
解:
关于x的一元二次方程
有两个相等的实数根,
∴
解得:
故选B
9.C
【解析】
由作图可得:
是AC的垂直平分线,记MN与AC的交点为G,证明
再证明
可得
,从而可得答案.
解:由作图可得:
是AC的垂直平分线,记MN与AC的交点为G,
∴
∵
,
∴
∴
故选C
10.B
【解析】
由剩余的油量等于原来的油量减去耗油量,从而可得函数解析式.
解:由题意可得:
即
故选B
11.
【解析】
先去分母,化成一元一次方程,求解,检验分母不为0,即可.
去分母得:
,
解得:
,
检验:
,
∴原方程的解为x=5.
故答案为:
.
12.
【解析】
根据概率的定义,抽到黑球的概率
,代入数值计算即可.
抽到黑球的概率:
,
故答案为:
.
13.
【解析】
由将线段
向右平移4个单位长度,可得点A
向右边平移了4个单位与C对应,再利用“右移加”即可得到答案.
解:∵将线段
向右平移4个单位长度,
∴点A
向右边平移了4个单位与C对应,
∴
即
故答案为:
14.
##
【解析】
先根据正方形的性质求解
再根据弧长公式进行计算即可.
解:∵正方形ABCD,
∴
∴
的长
故答案为:
15.
【解析】
根据“每人出100钱,则会多出100钱”用x表示出买猪需要的钱;根据“每人出90钱,恰好合适”用x表示出买猪需要的钱;二者相等,即可列方程.
依题意:
.
故答案为:100x-100=90x.
16.
【解析】
根据直角三角形的中线定理,先证明四边形
是平行四边形,再证明
是等边三角形,分别根据直角三角形中的三角函数求出AM和DM,从而得到答案.
解:如下图所示,设
交BM于点O,连接AO,
∵点
是中点,
∴在
和
中,
,
∴
,
∵
,
∴
,
∵
,
∴
,
∴
,
∵
∴四边形
是平行四边形,
∴
∴
,
∴
是等边三角形,
∴
∴
∴
,
∵
,
,
∴
,
∴
,
∵
,
∴
,
∴
,
故答案为:
.
17.
【解析】
先把除法转化为乘法运算,再进行乘法运算,最后计算减法运算即可.
解:
18.(1)12,
100
(2)720人
【解析】
(1)由频数分布直方图可得a的值,再由a除以频率
求解总人数c,再求解b即可;
(2)先求解样本中平均每周劳动时间在
范围内有
人,再由1000乘以其频率即可得到答案.
(1)
解:由频数分布直方图可得:
由
∴总人数为100人,
∴
∴
故答案为:12,
100
(2)
解:∵样本中平均每周劳动时间在
范围内有
(人),
∴该校1000名学生,估计平均每周劳动时间在
范围内的学生人数为:
(人).
19.证明见解析
【解析】
由菱形的性质得到AB=AD=BC=DC,∠B=∠D,进而推出BE=DF,根据全等三角形判定的“SAS”定理证得
,由全等三角形的性质即可证出
.
证明:∵四边形ABCD是菱形,
∴AB=AD=BC=DC,∠B=∠D,
∵AE=AF,
∴AB﹣AE=AD﹣AF,
∴BE=DF,
在△BCE和△DCF中,
,
∴
,
∴CE=CF.
20.冰墩墩毛绒玩具和雪容融毛绒玩具的单价分别为每个200元,100元.
【解析】
设冰墩墩毛绒玩具和雪容融毛绒玩具的单价分别为每个
元,y元,再根据购买1个冰墩墩毛绒玩具和2个雪容融毛绒玩具用了400元,购买3个冰墩墩毛绒玩具和4个雪容融毛绒玩具用了1000元,列方程组,再解方程组即可.
解:设冰墩墩毛绒玩具和雪容融毛绒玩具的单价分别为每个
元,y元,则
②-①
得
把
代入①得:
解得:
答:冰墩墩毛绒玩具和雪容融毛绒玩具的单价分别为每个200元,100元.
21.(1)
(2)
【解析】
(1)用待定系数法即可完成;
(2)把V=3和V=9代入(1)所求得的解析式中,即可求得密度
的变化范围.
(1)
解:∵密度
与体积V是反比例函数关系,
∴设
,
∵当
时,
,
∴
,
∴
,
∴密度
关于体积V的函数解析式为:
;
(2)
解:观察函数图象可知,
随V的增大而减小,
当
时,
,
当
时,
,
∴当
时,
即二氧化碳密度
的变化范围是
.
22.(1)300
(2)白塔
的高度约为
米.
【解析】
(1)由路程等于速度乘以时间即可得到答案;
(2)由题意可得:
而
再求解
再利用
再解方程即可.
(1)
解:∵索速车运行的速度是1米/秒,索道车从A处运行到B处所用时间的为5分钟,
∴
(米)
故答案为:300
(2)
解:由题意可得:
而
∴
∴
所以白塔
的高度约为
米.
23.(1)见解析
(2)
【解析】
(1)证明
,
,即可得出
;
(2)证明
,求出OD,由勾股定理求出DB,由垂径定理求出BC,进而利用勾股定理求出AC,AD.
(1)
解:∵
,
∴
,
∵
是
的切线,
∴
,
在
和
中,
,
,
∴
;
(2)
解:如图,连接AC.
∵
的半径为2,
∴
,
,
∵
在
和
中,
,
,
∴
,
∴
,即
,
∴
,
在
中,由勾股定理得:
,
∴
.
∵
,
经过
的圆心,
∴
,
∴
.
∵
是
的直径,C是
上一点,
∴
,
在
中,由勾股定理得:
,
∴
.
在
中,由勾股定理得:
,
∴
.
24.(1)8
(2)
【解析】
(1)根据勾股定理可求出BD的长,进而求得AD的长;
(2)利用相似可求出QP的长,然后利用三角形面积公式可求出关系式,注意分
在线段
和
在线段
上分别讨论.
(1)
解:∵
,
,
,
∴
,
∵
,
∴
=5,
∴AC=AD+DC=5+3=8;
(2)
解:由(1)得AD=5,
∵AP=x,
∴PD=5-x,
∵过点P作
的垂线,与
相交于点Q,
∴
,
∵
,
∴
即
,
在
和
中
,
∴
,
∴
∴
∵
与
重叠部分的面积为S
∴
的面积为S
即
,
∵点P不与点A,D,C重合,
∴
,
即
.
当
在
上运动时,如图,设
交
于点
,
则
即
综上所述,
25.(1)证明见解析;(2)证明见解析;(3)
【解析】
(1)利用三角形的内角和定理可得答案;
(2)如图,在BC上截取
证明
再证明
证明
可得
从而可得结论;
(3)如图,在BC上截取
同理可得:
利用勾股定理先求解
证明
可得
可得
证明
可得
而
可得
再利用勾股定理求解BE,即可得到答案.
证明:(1)
而
(2)
理由如下:
如图,在BC上截取
,
∵
∴
∴
∵
∴
(3)如图,在BC上截取
同理可得:
而
而
26.(1)
(2)当
最大时,
(3)
【解析】
(1)利用抛物线的解析式,令x=0,可得C的坐标,令y=0,可得A,C的坐标;
(2)由
可得
再分别表示
再建立二次函数关系式,再利用二次函数的性质可得答案;
(3)
如图,延长DC与x轴交于点N,过A作
于H,过
作
轴于K,连接BD,证明
证明
求解
可得
再求解
及
为
再联立:
从而可得答案.
(1)
解:∵
,
令
则
令
则
解得:
∴
(2)
∵
∴
而
∴
∴当
最大时,则
(3)
如图,延长DC与x轴交于点N,过A作
于H,过
作
轴于K,连接BD,
,
∵抛物线
∴顶点
轴,
∴
设
为
解得
∴
为
联立:
解得:
所以
- 1【328019】浙江省台州市2021年中考数学真题
- 2【328018】浙江省衢州市2022年中考数学真题
- 3【328017】浙江省丽水市2021年中考数学真题
- 4【328016】西藏2021年中考数学真题试卷
- 5【328015】四川省眉山市2021年中考数学真题
- 6【328014】四川省达州市2021年中考数学真题
- 7【328013】山东省烟台市2021年中考数学真题
- 8【328010】山东省东营市2021年中考数学真题
- 9【328011】山东省济宁市2021年中考数学真题
- 10【328012】山东省威海市2021年中考数学真题
- 11【328009】山东省德州市2021年中考数学试卷
- 12【328008】山东省滨州市2021年中考数学真题
- 13【328007】青海省西宁市城区2022年中考数学真题
- 14【328006】青海省西宁市城区2021年中考真题数学试卷
- 15【328005】内蒙古赤峰市2021年中考数学真题
- 16【328004】辽宁省锦州市2021年中考真题数学试卷
- 17【328003】辽宁省鞍山市2021年中考真题数学试卷
- 18【328002】江苏省镇江市2021年中考数学真题试卷
- 19【328001】江苏省常州市2021年数学中考真题
- 20【328000】湖南省株洲市2021年中考数学真题
- 【327999】湖南省湘潭市2021年中考数学真题
- 【327998】湖南省邵阳市2021年中考数学真题
- 【327997】湖南省怀化市2021年中考真题数学试卷
- 【327996】湖南省衡阳市2021年中考数学真题
- 【327995】湖北省随州市2021年中考数学真题
- 【327994】湖北省荆州市2021年中考数学真题
- 【327992】湖北省鄂州市2021年中考数学真题
- 【327993】湖北省荆门市2021年中考数学真题
- 【327991】黑龙江省龙东地区农垦 森工2021年中考数学真题
- 【327990】河北省2021年中考数学试卷
- 【327989】海南省2021年中考数学真题试卷
- 【327988】贵州省贵阳市2021年中考数学真题
- 【327987】贵州省安顺市2021年中考数学真题
- 【327985】广西来宾市2021年中考数学真题
- 【327986】广西玉林市2021年中考数学真题
- 【327984】广西贵港市2021年中考数学真题
- 【327983】广东省广州市2021年中考数学真题
- 【327982】甘肃省武威市定西市平凉市酒泉市庆阳市2021年中考数学试卷
- 【327981】福建省2021年中考数学试卷
- 【327980】北京市2021年中考数学真题试卷