【347141】《有理数的乘法与除法(2)》教学案
3.2有理数的乘法与除法(2)教学案
一、教与学目标:
1、从经历探索有理数乘法交换律、结合律和分配律的过程中,增强观察、归纳、猜测和验证的能力.
2、能针对题目特征灵活运用乘法运算律,使之计算简便.
二、教与学重点难点:
教与学重点:知道乘法运算律并会应用.
教与学难点:使学生比较灵活的运用乘法运算律进行计算符号问题.
三、教与学方法:
自主探究、合作交流
四、教与学过程:
(一)、情境导入: 请你判断下列等式是否成立,并请说明理由. 7 × 5=5 × 7 ,( 7 × 5 )× 2=7 ×( 5 × 2 ).容易看出,它们是小学所学的乘法交换律、结合律,那么,在引进了负数以后,这些运算律是否还成立?这节课我们就来研究一下. 从学生原有知识入手创设情境,引导大家进行有理数范围内的探索发现.有利于新旧知识间的衔接,不仅可使知识由旧到新之间的过渡十分自然,而且也为学生探索新知识作了铺垫.此法适用于知识间内在联系紧密的内容. (二)、探究新知: 1、问题导读: (1)计算下面算式:比较因数位置和运算结果,你能得出什么结论?
①(-6)×(-5)=
②(-5)×(-6)=
③(-17)× (2)计算:
①(-0.75)×(- ②(-0.75) ③(-4)×(-5)×0.25= ④(-4)×0.25×(-5)= (3)计算: ①
②
2、合作交流: 比较(1)中的题目,你的结论:________________ ______________ 比较(2)中的题目,由四个小题可以得出什么结论:______________________ 由(3)中的题目可以得出什么结论:___________ ___________________ 点拨指导:正如你刚才看到一样,小学学过的乘法的运算律在有理数范围内仍然适合,即有理数的乘法也满足: ①乘法交换律:ab=ba 阅读教材例2、例3、例4,注意书写格式,计算过程,小组讨论教材P61提出的问题. 点拨指导:几个不为0的数相乘,积的符号由负因数个数决定.当负因数的个数是偶数时,积为正;负因数的个数是奇数时,积为负,并把绝对值相乘. 3、精讲点拨: (1)教材例2和例4关键是根据算式的特点,选择合适的方法,这样才能保证计算又快又准.需要注意的是在交换因数的位置时,要连同符号一起交换. (2)教材例3先确定积的符号,使运算简便.这样的题目确定积的符号时只考虑负因数的个数,无需考虑正因数的个数. (三)、学以致用: 1、巩固新知: (1)(-4)×(-5)×0.25
(2)(-5.679)×
(3)
(4) 2、能力提升:
(1)-
(2)36×
(四)、达标测评: 1、选择题:
(1)计算 (A)加法交换律 (B)乘法分配律 (C)乘法交换律 (D)乘法结合律 (2)观察下列数表 1 2 3 4 …第一行 2 3 4 5 …第二行 3 4 5 6 …第三行 4 5 6 7 …第四行 ┋ ┋ ┋ ┋ 第 第 第 第 一 二 三 四 列 列 列 列 根据数表所反映的规律,第n行第n列交叉点上的数应为 ( ) A.2n-1 B.2n+1 C.n-1 D.n+1 (3)几个有理数相乘,积的符号由 决定,当 时,积为正;当___________时,积为负;当有一个因数为0时,积为________. (4)若a × b > 0, 并且 a>0, 则b ___ 0. 3、解答题: (5) (-0.125)×(-0.25)×8×(-4)
(6)
(
(7)
0.7× (8)
|
个性化修改: 温故 (1)有理数加法法则和乘法法则各是什么?
(2)如何进行有理数乘法运算?乘法运算符号如何规定?
本节课我们不仅要正确运用有理数乘法法则来进行运算,更要注意符号的确定对有理数乘法的意义,使运算更简便,使计算更准确.多个有理数相乘时,积的符号由因数中负因数的个数决定,“奇负偶正”.
计算: (-0.25)×( (-8) ×(-6) ×(-0.5)
计算: (-24)×(-
|
五、课堂小结:
1.本节课我们的成果是探究出有理数的乘法运算律并进行了应用.可见,运算律的运用十分灵活,各种运算律常常是混合应用的.这就要求我们要有较好的掌握运算律进行计算的能力,要寻找最佳解题途径,不断总结经验,使自己的能力得到提高.
2.通过本节课的学习你有哪些收获?还有哪些疑惑?
六、布置作业:
1.习题3.2 第2题 2.预习下一课时内容.
七、教学反思:
www.ishijuan.cn 爱试卷为中小学老师学生提供免费的试卷下载关注”试卷家“微信公众号免费下载试卷
- 1【354787】初一期末试卷一
- 2【354786】初一期末试卷五
- 3【354785】初一期末试卷四
- 4【354784】初一期末试卷三
- 5【354783】初一期末试卷二
- 6【350123】第6章 知识点梳理
- 7【350122】第5章 知识点梳理
- 8【350121】第4章 知识点梳理
- 9【350120】第3章 知识点梳理
- 10【350119】第2章 知识点梳理
- 11【350118】第1章 知识点梳理
- 12【350117】6.2 方差
- 13【350116】6.1.3 众数
- 14【350115】6.1.2 中位数
- 15【350114】6.1.1 第2课时 加权平均数
- 16【350112】5.3 图形变换的简单应用
- 17【350113】6.1.1 第1课时 平均数
- 18【350111】5.2 旋转
- 19【350110】5.1.2 轴对称变换
- 20【350109】5.1.1 轴对称图形
- 【350108】4.6 两条平行线间的距离
- 【350107】4.5 第2课时 垂线段与点到直线的距离
- 【350106】4.5 第1课时 垂线
- 【350105】4.4 第2课时 平行线的判定方法2,3
- 【350104】4.4 第1课时 平行线的判定方法1
- 【350103】4.3 平行线的性质
- 【350102】4.2 平移
- 【350101】4.1.2 相交直线所成的角
- 【350100】4.1.1 相交与平行
- 【350099】3.3 第2课时 利用完全平方公式进行因式分解
- 【350098】3.3 第1课时 利用平方差公式进行因式分解
- 【350097】3.2 第2课时 提多项式公因式
- 【350096】3.2 第1课时 提单项式公因式
- 【350095】3.1 多项式的因式分解
- 【350094】2.2.3 运用乘法公式进行计算
- 【350093】2.2.2 第2课时 运用完全平方公式进行计算
- 【350092】2.2.2 第1课时 完全平方公式
- 【350091】2.2.1 平方差公式
- 【350090】2.1.4 第2课时 多项式与多项式相乘
- 【350089】2.1.4 第1课时 单项式与多项式相乘