【333718】第十章 数据的收集、整理与描述周周测1(10.1)
第十章 数据的收集、整理与描述周周测1
一 选择题
1.为了了解我市6 000名学生参加初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法:①这6 000名学生的数学会考成绩的全体是总体;②每个考生是个体;③200名考生是总体的一个样本;④样本容量是200.其中说法正确的有( )
A.4个 B.3个 C.2个 D.1个
2.下列调查中:①调査本班同学的视力;②调查一批节能灯管的使用寿命;③为保证“神舟9号”的成功发射,对其零部件进行检查;④对乘坐某班次客车的乘客进行安检.其中适合采用抽样调查的是( )
A.① B.② C.③ D.④
3.某校七年级共320名学生参加数学测试,随机抽取50名学生的成绩进行统计,其中15名学生成绩达到优秀,则估计该校七年级学生在这次数学测试中达到优秀的人数大约有( )
A.50人 B.64人 C.90人 D.96人
4.为了了解2014年昆明市九年级学生学业水平考试的数学成绩,从中随机抽取1 000名学生的数学成绩,下列说法正确的是( )
A.2014年昆明市九年级学生是总体
B.每一名九年级学生是个体
C.1 000名九年级学生是总体的一个样本
D.样本容量是1 000
5.某品牌电插座抽样检查的合格率为99%,则下列说法中正确的是( )
A.购买100个该品牌的电插座,一定有99个合格
B.购买100个该品牌的电插座,一定有1个不合格
C.购买20个该品牌的电插座,一定都合格
D.即使购买1个该品牌的电插座,也可能不合格
6.为了解中学生获取资讯的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,现随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图,该调查的方式及图中的a的值是( )
A.全面调查,26 B.全面调查,24 C.抽样调查,26 D.抽样调查,24
二 填空题
一家电脑生产厂家在某城市三个经销本厂产品的大商场中进行调查,得到产品的销量占这三个大商场同类产品总销量的40%.由此他们在广告中宣传,他们的产品占国内同类产品销售量的40%.请你根据所学的统计知识,判断该宣传中的数据是否可靠:__________,理由是______________________________.
三 解答题
8.为了了解中学生参加体育活动的情况,某校对部分学生进行了调查,其中一个问题是:“你平均每天参加体育活动的时间是多少?”共有4个选项:
A.1.5小时以上 B.1~1.5小时 C.0.5小时 D.0.5小时以下
根据调查结果绘制了两幅不完整的统计图:
请你根据以上信息解答下列问题:
(1)本次调查活动采取了__________调查方式;
(2)计算本次调查的学生人数;
(3)请将图1中选项B的部分补充完整;
(4)若该校有3 000名学生,你估计该校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下?
9.某校九年级有1 200名学生,在体育考试前随机抽取部分学生进行体能测试,成绩分别记为A,B,C,D共四个等级,其中A级和B级成绩为“优”,将测试结果绘制成如下条形统计图和扇形统计图.
(1)求抽取参加体能测试的学生人数;
(2)估计该校九年级全体学生参加体能测试成绩为“优”的学生共有多少人?
10.为了了解某市120 000名初中学生的视力情况,某校数学兴趣小组收集有关数据,并进行整理分析.
(1)小明在眼镜店调查了1 000名初中学生的视力,小刚在邻居中调查了20名初中学生的视力,他们的抽样是否合理?并说明理由;
(2)该校数学兴趣小组从该市七、八、九年级各随机抽取了1000名学生进行调查,整理他们的视力情况数据,得到如下的折线统计图.
请你根据抽样调查的结果,估计该市120 000名初中学生视力不良的人数是多少?
第十章 数据的收集、整理与描述周周测1 参考答案与解析
一、选择题
1.C 2.B 3.D 4.D 5.D 6.D
二、填空题
7.不可靠 抽样不具有代表性
三、解答题
8.解:(1)抽样
(2)60÷30%=200(名).
答:本次调查的学生人数为200名.
(3)选项B对应的人数为200-60-30-10=100(名),图略.
(4)3000×5%=150(名).
答:估计该校可能有150名学生平均每天参加体育活动的时间在0.5小时以下.
9.解:(1)60÷30%=200(名).
答:抽取参加体能测试的学生人数为200名.
(2)由题意,C级对应人数为200×20%=40(名),则B级对应人数为200-60-40-15=85(名),1200×
=670(名).
答:估计该校九年级全体学生参加体能测试成绩为“优”的学生共有670人.
10.解:(1)小明和小刚的抽象都不合理,抽样没有代表性.
(2)120000×
=72000(名).
答:估计该市120 000名初中学生视力不良的人数是72000名.
- 1【354787】初一期末试卷一
- 2【354786】初一期末试卷五
- 3【354785】初一期末试卷四
- 4【354784】初一期末试卷三
- 5【354783】初一期末试卷二
- 6【350123】第6章 知识点梳理
- 7【350122】第5章 知识点梳理
- 8【350121】第4章 知识点梳理
- 9【350120】第3章 知识点梳理
- 10【350119】第2章 知识点梳理
- 11【350118】第1章 知识点梳理
- 12【350117】6.2 方差
- 13【350116】6.1.3 众数
- 14【350115】6.1.2 中位数
- 15【350114】6.1.1 第2课时 加权平均数
- 16【350112】5.3 图形变换的简单应用
- 17【350113】6.1.1 第1课时 平均数
- 18【350111】5.2 旋转
- 19【350110】5.1.2 轴对称变换
- 20【350109】5.1.1 轴对称图形
- 【350108】4.6 两条平行线间的距离
- 【350107】4.5 第2课时 垂线段与点到直线的距离
- 【350106】4.5 第1课时 垂线
- 【350105】4.4 第2课时 平行线的判定方法2,3
- 【350104】4.4 第1课时 平行线的判定方法1
- 【350103】4.3 平行线的性质
- 【350102】4.2 平移
- 【350101】4.1.2 相交直线所成的角
- 【350100】4.1.1 相交与平行
- 【350099】3.3 第2课时 利用完全平方公式进行因式分解
- 【350098】3.3 第1课时 利用平方差公式进行因式分解
- 【350097】3.2 第2课时 提多项式公因式
- 【350096】3.2 第1课时 提单项式公因式
- 【350095】3.1 多项式的因式分解
- 【350094】2.2.3 运用乘法公式进行计算
- 【350093】2.2.2 第2课时 运用完全平方公式进行计算
- 【350092】2.2.2 第1课时 完全平方公式
- 【350091】2.2.1 平方差公式
- 【350090】2.1.4 第2课时 多项式与多项式相乘
- 【350089】2.1.4 第1课时 单项式与多项式相乘