当前位置:首页 > 九年级 > 数学试卷

【332007】类比归纳专题:利用转化思想求角度

时间:2025-02-09 11:45:06 作者: 字数:3487字
简介:

类比归纳专题:利用转化思想求角度

——快速找到圆中求角度的解题渠道

类型一 利用同弧或等弧转化圆周角与圆心角

1.如图,在O中,=,AOB50°,则ADC的度数是(  )

A50° B40° C30° D25°

 <a href="/tags/23/" title="角度" class="c1" target="_blank">角度</a> <a href="/tags/207/" title="思想" class="c1" target="_blank">思想</a> <a href="/tags/219/" title="类比" class="c1" target="_blank">类比</a> <a href="/tags/224/" title="转化" class="c1" target="_blank">转化</a> <a href="/tags/236/" title="归纳" class="c1" target="_blank">归纳</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a>  <a href="/tags/23/" title="角度" class="c1" target="_blank">角度</a> <a href="/tags/207/" title="思想" class="c1" target="_blank">思想</a> <a href="/tags/219/" title="类比" class="c1" target="_blank">类比</a> <a href="/tags/224/" title="转化" class="c1" target="_blank">转化</a> <a href="/tags/236/" title="归纳" class="c1" target="_blank">归纳</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a>  <a href="/tags/23/" title="角度" class="c1" target="_blank">角度</a> <a href="/tags/207/" title="思想" class="c1" target="_blank">思想</a> <a href="/tags/219/" title="类比" class="c1" target="_blank">类比</a> <a href="/tags/224/" title="转化" class="c1" target="_blank">转化</a> <a href="/tags/236/" title="归纳" class="c1" target="_blank">归纳</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a>

1题图 2题图 3题图

2(2016·株洲石峰区模拟)如图,ABCO上三点,ACB25°,则BAO的度数是(  )

A50° B55° C60° D65°

3(2016·泰安中考)如图,点ABCO上的三点,且四边形ABCO是平行四边形,OFOCO于点F,则BAF等于(  )

A12.5° B15° C20° D22.5°

类型二 构造圆内接四边形转化角

4.如图,已知ABACADCBD2BDCBAC44°,则CAD的度数为(  )

A68° B88° C90° D112°

 <a href="/tags/23/" title="角度" class="c1" target="_blank">角度</a> <a href="/tags/207/" title="思想" class="c1" target="_blank">思想</a> <a href="/tags/219/" title="类比" class="c1" target="_blank">类比</a> <a href="/tags/224/" title="转化" class="c1" target="_blank">转化</a> <a href="/tags/236/" title="归纳" class="c1" target="_blank">归纳</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a>  <a href="/tags/23/" title="角度" class="c1" target="_blank">角度</a> <a href="/tags/207/" title="思想" class="c1" target="_blank">思想</a> <a href="/tags/219/" title="类比" class="c1" target="_blank">类比</a> <a href="/tags/224/" title="转化" class="c1" target="_blank">转化</a> <a href="/tags/236/" title="归纳" class="c1" target="_blank">归纳</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a>

4题图 5题图

5(2016·南京中考)如图,扇形OAB的圆心角为122°C是上一点,则ACB________°.

类型三 利用直径构造直角三角形转化角

6.如图,ABC内接于OBDO的直径.若DBC33°,则A等于(  )

A33° B57° C67° D66°

 <a href="/tags/23/" title="角度" class="c1" target="_blank">角度</a> <a href="/tags/207/" title="思想" class="c1" target="_blank">思想</a> <a href="/tags/219/" title="类比" class="c1" target="_blank">类比</a> <a href="/tags/224/" title="转化" class="c1" target="_blank">转化</a> <a href="/tags/236/" title="归纳" class="c1" target="_blank">归纳</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a>  <a href="/tags/23/" title="角度" class="c1" target="_blank">角度</a> <a href="/tags/207/" title="思想" class="c1" target="_blank">思想</a> <a href="/tags/219/" title="类比" class="c1" target="_blank">类比</a> <a href="/tags/224/" title="转化" class="c1" target="_blank">转化</a> <a href="/tags/236/" title="归纳" class="c1" target="_blank">归纳</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a>

6题图 7题图

7(2016·达州中考)如图,半径为3A经过原点O和点C(02)By轴左侧A优弧上一点,则tanOBC(  )

A. B2 C. D.


8.如图,ABC的顶点均在O上,ADO的直径,AEBCE.求证:BADEAC.

 <a href="/tags/23/" title="角度" class="c1" target="_blank">角度</a> <a href="/tags/207/" title="思想" class="c1" target="_blank">思想</a> <a href="/tags/219/" title="类比" class="c1" target="_blank">类比</a> <a href="/tags/224/" title="转化" class="c1" target="_blank">转化</a> <a href="/tags/236/" title="归纳" class="c1" target="_blank">归纳</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a>





类型四 利用特殊数量关系构造特殊角转化角

  1. 如图,ABC内接于OAB2O的半径为,则C________

 <a href="/tags/23/" title="角度" class="c1" target="_blank">角度</a> <a href="/tags/207/" title="思想" class="c1" target="_blank">思想</a> <a href="/tags/219/" title="类比" class="c1" target="_blank">类比</a> <a href="/tags/224/" title="转化" class="c1" target="_blank">转化</a> <a href="/tags/236/" title="归纳" class="c1" target="_blank">归纳</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a>

10.如图,OAOBO的半径且OAOB,作OA的垂直平分线交O于点CD,连接CBAB.

求证:ABC2CBO.


 <a href="/tags/23/" title="角度" class="c1" target="_blank">角度</a> <a href="/tags/207/" title="思想" class="c1" target="_blank">思想</a> <a href="/tags/219/" title="类比" class="c1" target="_blank">类比</a> <a href="/tags/224/" title="转化" class="c1" target="_blank">转化</a> <a href="/tags/236/" title="归纳" class="c1" target="_blank">归纳</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a>






参考答案与解析

1D 2.D

3B 解析:连接OB,∵四边形ABCO是平行四边形,∴OCABOCAB.又∵OAOBOC,∴OAOBAB,∴△AOB为等边三角形.∵OFOC,∴OFAB,∴∠BOF=∠AOF30°.由圆周角定理得∠BAF=∠BOF15°.故选B.

4B 解析:∵ABACAD,∴点BCD在以点A为圆心,以AB的长为半径的圆上.∵∠CBD2BDC,∠CAD2CBD,∠BAC2BDC,∴∠CAD2BAC.∵∠BAC44°,∴∠CAD88°.



5119 解析:如图所示,在⊙O上取点D,连接ADBD.∵∠AOB122°,∴∠ADB=∠AOB×122°61°.四边形ADBC是圆内接四边形,∴∠ACB180°61°119°.

 <a href="/tags/23/" title="角度" class="c1" target="_blank">角度</a> <a href="/tags/207/" title="思想" class="c1" target="_blank">思想</a> <a href="/tags/219/" title="类比" class="c1" target="_blank">类比</a> <a href="/tags/224/" title="转化" class="c1" target="_blank">转化</a> <a href="/tags/236/" title="归纳" class="c1" target="_blank">归纳</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a>

6B

7C 解析:若⊙Ax轴负半轴交于点D,连接CD.∵∠COD90°,∴CD为⊙A的直径.在RtOCD中,CD6OC2,则OD==4tanCDO==.由圆周角定理得∠OBC=∠CDO,∴tanOBCtanCDO.故选C.

8.证明:连接BD.AD是⊙O的直径,∴∠ABD90°,∴∠BAD+∠D90°.AE是△ABC的高,∴∠AEC90°,∴∠CAE+∠ACB90°.∵∠D=∠ACB,∴∠BAD=∠EAC.

945° 解析:连接OAOB.OAOB=,AB2,∴OA2OB2AB2,∴∠AOB90°,∴∠C=∠AOB45°.

10.证明:连接OCAC.CD垂直平分OA,∴OCAC.OAOCAC,∴△OAC是等边三角形,∴∠AOC60°,∴∠ABC=∠AOC30°.在△BOC中,∠BOC=∠AOC+∠AOB150°.OBOC,∴∠CBO15°,∴∠ABC2CBO.