当前位置:首页 > 九年级 > 数学试卷

【331947】九年级数学下册 27.2.1 相似三角形的判定同步测试 (新版)新人教版

时间:2025-02-09 11:41:24 作者: 字数:14960字
简介:

相似三角形

272.1 相似三角形的判定

1课时 平行线分线段成比例定理 [BP69]

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

1.如图2721,已知直线abc,直线mnabc分别交于点ACEBDFAC4CE6BD3,则BF( B )

A7 B7.5 C8 D8.5

【解析】 ∵abc,∴=,∴=,∴DF4.5,∴BFBDDF7.5.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

2721

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

2722

2.如图2722,若l1l2,那么以下比例式中正确的是( D )

A.B.

C.D.

3.如图2723,已知BDCE,则下列等式不成立的是( A )

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

2723

A.B.

C.D.

4. 如图2724,在△ABC中,点DE分别在边ABAC上,DEBC.已知AE6,=,则EC的长是( B )

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

2724

A4.5 B8 C10.5 D14

【解析】 根据平行线分线段成比例定理,列出比例式求解即可得到答案.

DEBC,∴=,

AE6,∴=,解得EC8,则EC的长是8.

5.如图2725所示,△ABC中,DEBCAD5BD10AE3,则 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a> CE的值为( B )

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

2725

A9 B6  <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a> C3 D4

【解析】 ∵DEBC,∴=.∵AD5BD10AE3,∴=,∴CE6,故选B.

6.如图2726,△ABC中,点D在线段BC上,且△ABC∽△DBA,则下列结论一定正确的是( A )

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

2726

AAB2BC·BD

BAB2AC·BD

CAB·ADBD·BC

DAB·ADAD·CD

【解析】 由△ABC∽△DBA可得对应边成比例,即=,再根据比例的性质可知AB2BC·BD,故选A.

7.如图2727,在梯形ABCD中,AD <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a> BC,对角线ACBD相交于点O,若AD1B <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a> C3,则的值为( B )

A. B. C. D.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

2727

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

2728

8.如图2728,已知DEABDFBC,下列结论中不正确的是( D )

A.B.

C.D.

【解析】 A正确,∵DEABDFBC

四边形DEBF是平行四边形,∴DEBF.

DFBC,∴=,∴=;

B正确,∵DEAB,∴=,

DFBC,∴=,∴=;

C正确,∵四边形DEBF是平行四边形,

DFBE.

DEAB,∴=,∴=;

D不正确,∵DFBC,∴=,

DEAB,∴=,∴=,

BEDF,∴=.

9.如图2729,已知ACDBOAOB3∶5OA9CD32,则OB__15__OD__20__

【解析】 ∵=,∴OBOA×915.

ODx,则OC32x.

ACDB,∴=,∴=,解得x20.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

2729

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27210

10.如图27210,已知l1l2l3AM3 cmBM5 cmCM4.5 cmEF12 cm,则DM__7.5__cmEK__4.5__cmFK__7.5__cm.

【解析】 ∵l1l2l3,∴=,

=,∴DM7.5 cm.

l1l2l3,∴=,∴=,

EK4.5 cm

FKEFEK124.57.5(cm)

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

11. 如图27211,已知在△ABC中,点DEF分别是边ABACBC上的点,DEBCEFAB,且ADDB 3∶5,那么CFCB等于( A )

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27211

A. 5∶8 B3∶8

C. 3∶5 D2∶5

【解析】 ∵ADDB3∶5,∴BDAB5∶8

DEBC,∴CEACBDAB5∶8

EFAB

CFCBCEAC5∶8.

12.如图27212,点FABCD的边CD上一点,直线BFAD的延长线于点E,则下列结论错误的是( C )

A.B.

C.D.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>  <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27212

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27213

13.如图27213,已知FGBCAEGHCD,求证:=.

【解析】 观察图形,我们会发现AEGHCD,具备了平行线分线段成比例定理的基本图形,可推得=;由FGBC,知它具备了定理推论中的“A”型的基本图形,可推得=,从而可证得=.

证明:∵AEGHCD,∴=.

FGBC,∴=,∴=.

14.如图27214,已知ABMNBCNG,求证:=.

证明:∵ABMN,∴=,

又∵BCNG,∴=,∴=.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27214

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27215

15.如图27215ABCD中,ECD延长线上,BEADF.AB3BC4DF1,求DE的长.

解:∵四边形ABCD是平行四边形,

ABDCADBC.

ABDCADBC

==,

=,

又∵AFADDFBCDF3

=,∴DE1.


 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

16.如图27216,已知AD是△ABC的角平分线,CEADBA的延长线于点E.

求证:=.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27216

证明:∵ADCE,∴∠BAD=∠E,∠DAC=∠ACE.

又∵∠BAD=∠DAC

∴∠E=∠ACE

AEAC.

又∵CE <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a> AD

=,∴=.



2课时 相似三角形判定定理12 [AP71]

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

1.如图27217,在△ABC中,DEBC,若=,DE4 cm,则BC的长为( B )

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27217

A8 cm B12 cm

C11 cm D10 cm

【解析】 ∵DEBC

∴△ADE∽△ABC,∴=.

=,∴=,∴=,

BC12 cm,选择B.

2. 能说明△ABC∽△ABC的条件是( D )

A.=≠

B.=,∠A=∠C

C.=,且∠B=∠A

D.=,且∠B=∠B

3.如图27218,四边形ABCD的对角线ACBD相交于O,且将 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a> 这个四边形分成①,②,③,④四个三角形,若OAOCOBOD,则下列结论中一定正确的是( B )


 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27218

A.①和②相似 B.①和③相似

C.①和④相似 D.②和④相似

【解析】 两个三角形两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.

4.如图27219,在△ABC中,点DE分别是ABAC的中点,则下列结论:①BC2DE;②△ADE∽△ABC;③=.其中正确的有( A )

A3B2C1D0

【解析】 点DE分别是ABAC的中点,所以由中位线定理得DEBC,且DEBC,①正确;因为DEBC,所以△ADE∽△ABC,②正确;由②得=,③正确.故选 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a> A.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27219

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27220

5.如图27220,在ABCD中,EAD上一点,连接CE并延长交BA的延长线于点F,则下列结论中错误的是( B )

A.∠AEF=∠DEC BFACDAEBC

CFAABFEEC DABDC

【解析】 ∵DCAB,∴△DCE∽△AFE

=,故结论B错误.

AEBC,∴△FAE∽△FBC

=,即=,∴=,

=,即FAABFEEC,故结论C正确.而AD显然正确,∴应选B.

6.在△ABC中,AB9AC12BC18DAC上一点,DCAC,在AB上取一点E,得到△ADE,若△ADE与△ABC相似,则DE长为__68__

【解析】 (1)当△AED∽△ABC时,此时图形为(a),可得DE6(2)当△AED∽△ACB时,此时图形为(b),可得DE8.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

7.如图27221,在△ABC中,已知DEBCAD4DB8DE3.(1)求的值;(2)BC.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27221

解:(1)∵AD4DB8

ABADDB4812

==.

(2)∵DEBC,∴△ADE∽△ABC,∴=.

DE <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a> 3,∴=,∴BC9.

8.网格图中每个方格都是边长为1的正方形.若ABCDEF都是格点,试说明△ABC∽△DEF.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27222

【解析】 利用图形与勾股定理可以推知图中两个三角形的三条对应边成比例,由此可以证得△ABC∽△DEF.

解:∵AC=,BC==,AB4DF==2EF==2ED8

===,

∴△ABC∽△DEF.

9.如图27223DEF分别是△ABC的三边BCCAAB的中点.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27223

(1)求证:△DEF∽△ABC

(2)图中还有哪几个三角形与△ABC相似?

解:(1)证明:∵DF分别是△ABC的边BCBA的中点,

DFAC

同理EFCBDEAB

则==,

∴△DEF∽△ABC

(2)∵EF分别是△ABC的三边CAAB的中点,

EFBC

∴△AFE∽△ABC.

同理,△FBD∽△ABC,△EDC∽△ABC.

图中与△ABC相似的三角形还有△AFE,△FBD,△EDC.

10.如图27224,△ABC是等边三角形,DEBC边所在的直线上,且AB·ACBD·CE.

求证:△ABD∽△ECA.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27224

证明:∵△ABC是等边三角形(已知)

∴∠ABC=∠ACB60°(等边三角形的三个内角相等,都等于60°),∴∠ABD=∠ACE(等角的补角相等)

AB·ACBD·CE(已知),即=,

∴△ABD∽△ECA(两边对应成比例且夹角相等的两三角形相似)

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

11.如图27225,已知正方形ABCD中,FBC上一点,且BF3FCEDC的中点.求证:△ADE∽△ECF.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27225

证明:∵正方形ABCD中,ECD中点,

CEEDCDAD.

BF3FC

FCBCADCE.

==,即=.

∵∠C=∠D90°

∴△ADE∽△ECF.

12.如图27 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a> 226,∠DAB=∠CAE,且AB·ADAE·AC,请在图中找出与∠ADE相等的角,并说明理由.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27226

【解析】 由AB·ADAE·AC得=,如果证得它们的夹角相等,就可得到三角形相似,于是就有与∠ADE相等的角.

解:∠C=∠ADE,理由如下:

∵∠DAB=∠CAE

∴∠DAB+∠BAE=∠CAE+∠BAE

∴∠DAE=∠BAC.

AB·ADAE·AC

=,∴△ABC∽△AED

∴∠ADE=∠C.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

13. 如图27227,∠AOB90°OAOBBCCD.请找出图中的相似三角形,并说明理由.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27227

解:△ABC∽△DBA.

理由如下:设OAOBBCCDx

根据勾股定理,AB==x

AC==x

AD==x

==,==,==,

==,

∴△ABC∽△DBA.



3课时 相似三角形判定定理3 [BP71]

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

1.已知如图27228(1)(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)ABCD交于O点,对于各图中的两个三角形而言,下列说法正确的是( A )

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27228

A.都相似 B.都不相似

C.只有(1)相似 D.只有(2)相似

【解析】 两角对应相等,或者两组对应边的比相等,并且相应的夹角相等的两个三角形相似.

2.△ABC和△DEF满足下列条件,其中使△ABC与△DEF不相似的是( C )

A.∠A=∠D45°38′,∠C26°22′,∠E108°

BAB1AC1.5BC2DE12EF8

DF16

CB <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a> CaACbABcDE=,EF=,DF

DABACDEDF,∠A=∠D40°

3.如图27229,在△ABC中,∠C90°DAC上一点,DEAB于点E,若AC8BC6DE3,则AD的长为( C )

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27229

A3 B4 C5 D6

【解析】 在△ABC中,∠C90°AC8BC6,由勾股定理得AB===10.在△ADE和△ABC中,∵∠A=∠A,∠AED=∠C,∴△ADE∽△ABC,∴=,即=,∴AD5.

4.如图27230所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③=;④AC2AD·AB.其中单独能够判定△ABC∽△ACD的个数为( C )

A1 B2 C3 D4

【解析】 图中△AB <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a> C与△ACD有一组公共角,根据相似三角形的判定方法,可再补充另一组对应角相等,①②符合条件;或补充夹公共角的两边对应成比例,④符合条件,所以补充①②④能判定△ABC∽△ACD.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27230

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27231

5.如图27231,在△ABC中,AB5AC4,点D在边AB上,∠ACD=∠B,则AD的长为____

6. [2013·安顺]如图27232,在ABCD中,点EDC上,若DEEC1∶2,则BFBE__3∶5__

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27232


 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27233

7.如图27233,∠1=∠2,添加一个条件,使得△ADE∽△ACB__D=∠C或∠E=∠B或=__

【解析】 由∠1=∠2可得∠DAE=∠CAB.只需还有一对角对应相等或夹边对应成比例即可使得△ADE∽△ACB.

8. [2013·六盘水]如图27234,添加一个条件:__ADE=∠C或∠AED=∠B或=__,使得△ADE∽△ACB.(写出一个即可) <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

【解析】 由题意得,∠A=∠A(公共角)

则可添加:∠ADE=∠C或∠AED=∠B,利用两角法可判定△ADE∽△ACB,添加=也可以.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27234

    <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27235

9. 如图27235,在△ABC中,ABACBDCDCEABE.求证:△ABD∽△CBE.

证明:在△ABC中,ABACBDCD

ADBC

CEAB

∴∠ADB=∠CEB90°

又∵∠B=∠B

∴△ABD∽△CBE.

10.如图27236,点P在平行四边形ABCDCD边上,连接BP并延长与AD的延长线交于点Q.

(1)求证:△DQP∽△CBP

(2)当△DQP≌△CBP,且AB8时,求DP的长.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27236

解:(1)∵四边形ABCD是平行四边形,

AQBC,∴∠Q=∠PBC,∠PDQ=∠C

∴△DQP∽△CBP

(2)∵△DQP≌△CBP

DPCPCD.∵ABCD8,∴DP4.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27237

11.如图27237所示,在平行四边形ABCD中,ACBD相交于点OEOD的中点,连接AE并延长交DC于点F,则DFFC( D )

A1∶4  B1∶3  C2∶3  D1∶2

【解析】 在平行四边形ABCD中,ABDC,则△DFE∽△BAE,∴=,

O为对角线的交点,∴DOBO

又∵EOD的中点,∴DEDB

DEEB1∶3,∴DFAB1∶3

DCAB,∴DFDC1∶3,∴DFFC1∶2.


 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27238

12.如图27238,△ABC中, <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a> AEBC于点D,∠C=∠EAD4BC8BDDC5∶3,则DE的长等于( B )

A.    B.

C.    D.

【解析】∵∠AD <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a> C=∠BDE,∠C=∠E

∴△ADC∽△BDE,∴=,

AD4BC8BDDC5∶3

BD5DC3

DE==.

故选B.

13.如图27239AC是⊙O的直径,弦BDAC于点E.

(1)求证:△ADE∽△BCE

(2)如果AD2AE·AC,求证:CDCB.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27239

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

13题答图

解:(1)证明:∵∠A与∠BCD所对的圆周角,

∴∠A=∠B

又∵∠AED=∠BEC,∴△ADE∽△BCE

(2)证明:如图,∵AD2AE·AC,∴=,

又∵∠A=∠A,∴△ADE∽△ACD

∴∠AED=∠ADC

又∵AC是⊙O的直径,∴∠ADC90°

即∠AED90°,∴直径ACBD,∴CDCB.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

14.已知AB是⊙O的直径,弦CDAB于点GE是直线AB上一动点(不与点ABG重合),直线DE交⊙O于点F,直线CF交直线AB于点P.设⊙O的半径为r.

(1)如图(1),当点E在直径AB上时,试证明:OE·OPr2

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

27240

(2)当点EAB(BA)的延长线上时,以图(2)中点E的位置为例,请你画出符合题意的图形,标注上字母,(1)中的结论是否成立?请说明理由.

解:(1)证明:如图(1),连接FO并延长交⊙OQ,连接DQ.

FQ是⊙O的直径,∴∠FDQ90°

∴∠QFD+∠Q90°.

CDAB,∴∠P+∠C90°.

∵∠Q=∠C,∴∠QFD=∠P.

∵∠FOE=∠POF,∴△FOE∽△POF

=,∴OE·OPOF2r2.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

(1)

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/50/" title="同步" class="c1" target="_blank">同步</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/387/" title="三角形" class="c1" target="_blank">三角形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/920/" title="三角" class="c1" target="_blank">三角</a>

(2)

(2)(1)中的结论成立.

理由:如图(2),依题意画出图形,连接FO并延长交⊙OM,连接CM.

FM是⊙O的直径,∴∠FCM90°

∴∠M+∠CFM90°.

CDAB,∴∠E+∠D90°.

∵∠M=∠D,∴∠CFM=∠E.

∵∠POF=∠FOE,∴△POF∽△FOE

=,∴OE·OPOF2r2.