当前位置:首页 > 九年级 > 数学试卷

【331616】北师大版九年级(下)第一章 单元测试卷2

时间:2025-02-07 10:07:07 作者: 字数:20901字
简介:

单元测试(二)

一、选择题

1.如图,已知在RtABC中,C=90°AB=5BC=3,则cosB的值是(  )

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

A <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> B <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> C <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> D <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

2.如果α是锐角,且 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,那么cos90°﹣α)的值为(  )

A <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> B <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> C <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> D <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

3.已知:在RtABC中,C=90°sinA= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,则cosB的值为(  )

A <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> B <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> C <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> D <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

4.在ABC中,若tanA=1sinB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,你认为最确切的判断是(  )

AABC是等腰三角形 BABC是等腰直角三角形

CABC是直角三角形 DABC是一般锐角三角形

5.在ABC中,若|sinA﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> |+ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>cosB2=0AB都是锐角,则C的度数是(  )

A75° B90° C105° D120°

6.如图,电线杆CD的高度为h,两根拉线ACBC相互垂直,CAB=α,则拉线BC的长度为(ADB在同一条直线上)(  )

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

A <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> B <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> C <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> Dh•cosα

7.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,则小车上升的高度是(  )

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

A5 B6 C6.5 D12

8.如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平地面A处安置测倾器测得楼房CD顶部点D的仰角为45°,向前走20米到达A′处,测得点D的仰角为67.5°,已知测倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米, <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> 1.414)(  )

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

A34.14 B34.1 C35.7 D35.74

9.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=10.75,坡长BC=10米,则此时AB的长约为(  )(参考数据:sin40°0.64cos40°0.77tan40°0.84).

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

A5.1 B6.3 C7.1 D9.2


二、填空题

10.若 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> 是二次函数,则m的值是   . 

11.在RtABC中,C=90°AB=2BC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,则sin <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = 

12.如图,BC是一条河的直线河岸,点A是河岸BC对岸上的一点,ABBCB,站在河岸CC处测得BCA=50°BC=10m,则桥长AB=   m(用计算器计算,结果精确到0.1米)

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

13.如图,在直角BAD中,延长斜边BD到点C,使DC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> BD,连接AC,若tanB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,则tanCAD的值

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

14.如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40km,仰角是30°n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是   km

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>


三、解答题

15.计算:tan260°﹣2sin30°﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> cos45°





16162017•宝应县一模)计算: <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> + <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>1﹣4cos45°﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>0






17.如图,某商店营业大厅自动扶梯AB的倾斜角为31°AB的长为12米,求大厅的距离AC的长.(结果精确到0.1米)(参考数据:sin31°=0.515cos31°=0.857tan31°=0.60

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>






 

18.如图,信号塔PQ座落在坡度i=12的山坡上,其正前方直立着一警示牌.当太阳光线与水平线成60°角时,测得信号塔PQ落在斜坡上的影子QN长为2 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> 米,落在警示牌上的影子MN长为3米,求信号塔PQ的高.(结果不取近似值)

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>






19.如图,某人为了测量小山顶上的塔ED的高,他在山下的点A处测得塔尖点D的仰角为45°,再沿AC方向前进60m到达山脚点B,测得塔尖点D的仰角为60°,塔底点E的仰角为30°,求塔ED的高度.(结果保留根号)

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>






20.耸立在临清市城北大运河东岸的舍利宝塔,是“运河四大名塔”之一(如图1).数学兴趣小组的小亮同学在塔上观景点P处,利用测角仪测得运河两岸上的AB两点的俯角分别为17.9°22°,并测得塔底点C到点B的距离为142米(ABC在同一直线上,如图2),求运河两岸上的AB两点的距离(精确到1米).

(参考数据:sin22°0.37cos22°0.93tan22°0.40sin17.9°0.31cos17.9°0.95tan17.9°0.32 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>





21.如图,为了测得一棵树的高度AB,小明在D处用高为1m的测角仪CD,测得树顶A的仰角为45°,再向树方向前进10m,又测得树顶A的仰角为60°,求这棵树的高度AB

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>


 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>







答案与解析

1.如图,已知在RtABC中,C=90°AB=5BC=3,则cosB的值是(  )

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

A <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> B <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> C <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> D <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】T1:锐角三角函数的定义.

【专题】选择题

【分析】根据余弦的定义解答即可.

【解答】解:在RtABC中,BC=3AB=5

cosB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

故选:A

【点评】本题考查的是锐角三角函数的定义,掌握锐角A的邻边a与斜边c的比叫做A的余弦是解题的关键.

 

2.如果α是锐角,且 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,那么cos90°﹣α)的值为(  )

A <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> B <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> C <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> D <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】T3:同角三角函数的关系.

【专题】选择题

【分析】根据互为余角三角函数关系,解答即可.

【解答】解:α为锐角, <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

cos90°﹣α=sinα= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

故选B

【点评】本题考查了互为余角的三角函数值,熟记三角函数关系式,是正确解答的基础.

 

3.已知:在RtABC中,C=90°sinA= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,则cosB的值为(  )

A <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> B <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> C <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> D <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】T4:互余两角三角函数的关系.

【专题】选择题

【分析】根据一个角的余弦等于它余角的正弦,可得答案.

【解答】解:由在RtABC中,C=90°,得

A+∠B=90°

cosB=sinA= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

故选:D

【点评】本题考查了互余两角三角函数关系,利用一个角的余弦等于它余角的正弦是解题关键.

 

4.在ABC中,若tanA=1sinB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,你认为最确切的判断是(  )

AABC是等腰三角形 BABC是等腰直角三角形

CABC是直角三角形 DABC是一般锐角三角形

【考点】T5:特殊角的三角函数值.

【专题】选择题

【分析】先根据特殊角的三角函数值求出AB的值,再根据三角形内角和定理求出C即可判断.

【解答】解:tanA=1sinB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

∴∠A=45°B=45°

三角形内角和为180°

∴∠C=90°

∴△ABC是等腰直角三角形.

故选B

【点评】解答此题的关键是熟记特殊角的三角函数值,三角形内角和定理及等腰三角形的判定.

 

5.在ABC中,若|sinA﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> |+ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>cosB2=0AB都是锐角,则C的度数是(  )

A75° B90° C105° D120°

【考点】T5:特殊角的三角函数值;16:非负数的性质:绝对值;1F:非负数的性质:偶次方.

【专题】选择题

【分析】本题可根据非负数的性质“两个非负数相加和为0,这两个非负数的值都为0.”分别求出AB的值.然后用三角形内角和定理即可求出C的值.

【解答】解:|sinA﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> |=0,( <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>cosB2=0

sinA﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> =0 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>cosB=0

sinA= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> =cosB

∴∠A=45°B=30°

∴∠C=180°﹣A﹣B=105°

故选C

【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握二次根式、绝对值、非负数等考点的运算.

 

6.如图,电线杆CD的高度为h,两根拉线ACBC相互垂直,CAB=α,则拉线BC的长度为(ADB在同一条直线上)(  )

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

A <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> B <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> C <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> Dh•cosα

【考点】T8:解直角三角形的应用.

【专题】选择题

【分析】根据同角的余角相等得CAD=BCD,由osBCD= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> BC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【解答】解:∵∠CAD+∠ACD=90°ACD+∠BCD=90°

∴∠CAD=BCD

RtBCD中,cosBCD= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

BC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

故选:B

【点评】本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.

 

7.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,则小车上升的高度是(  )

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

A5 B6 C6.5 D12

【考点】T9:解直角三角形的应用﹣坡度坡角问题.

【专题】选择题

【分析】RtABC中,先求出AB,再利用勾股定理求出BC即可.

【解答】解:如图AC=13,作CBAB

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

cosα= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

AB=12

BC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> =132﹣122=5

小车上升的高度是5m

故选A

【点评】此题主要考查解直角三角形,锐角三角函数,勾股定理等知识,解题的关键是学会构造直角三角形解决问题,属于中考常考题型.

 

8.如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平地面A处安置测倾器测得楼房CD顶部点D的仰角为45°,向前走20米到达A′处,测得点D的仰角为67.5°,已知测倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米, <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> 1.414)(  )

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

A34.14 B34.1 C35.7 D35.74

【考点】TA:解直角三角形的应用﹣仰角俯角问题.

【专题】选择题

【分析】BBFCDF,于是得到AB=A′B′=CF=1.6米,解直角三角形即可得到结论.

【解答】解:过BBFCDF

AB=A′B′=CF=1.6米,

RtDFB′中,B′F= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

RtDFB中,BF=DF

BB′=AA′=20

BF﹣B′F=DF﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> =20

DF34.1米,

CD=DF+CF=35.7米,

答:楼房CD的高度约为35.7米,

故选C

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.

 

9.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=10.75,坡长BC=10米,则此时AB的长约为(  )(参考数据:sin40°0.64cos40°0.77tan40°0.84).

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

A5.1 B6.3 C7.1 D9.2

【考点】TA:解直角三角形的应用﹣仰角俯角问题;T9:解直角三角形的应用﹣坡度坡角问题.

【专题】选择题

【分析】延长DEAB延长线于点P,作CQAP,可得CE=PQ=2CQ=PE,由i= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> 可设CQ=4xBQ=3x,根据BQ2+CQ2=BC2求得x的值,即可知DP=11,由AP= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> 结合AB=AP﹣BQ﹣PQ可得答案.

【解答】解:如图,延长DEAB延长线于点P,作CQAP于点Q

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

CEAP

DPAP

四边形CEPQ为矩形,

CE=PQ=2CQ=PE

i= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

CQ=4xBQ=3x

BQ2+CQ2=BC2可得(4x2+3x2=102

解得:x=2x=﹣2(舍),

CQ=PE=8BQ=6

DP=DE+PE=11

RtADP中,AP= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> 13.1

AB=AP﹣BQ﹣PQ=13.1﹣6﹣2=5.1

故选:A

【点评】此题考查了俯角与坡度的知识.注意构造所给坡度和所给锐角所在的直角三角形是解决问题的难点,利用坡度和三角函数求值得到相应线段的长度是解决问题的关键.

10.若 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> 是二次函数,则m的值是 ﹣3 

【考点】H1:二次函数的定义.

【专题】填空题

【分析】根据二次函数的定义列出有关m的方程,然后求解即可.

【解答】解:由二次函数的定义可知:m2+2m﹣1=2

解得:m=﹣31

m﹣10m1

m=﹣3

故答案为:﹣3

【点评】本题考查了二次函数的定义,属于基础题,难度不大,注意掌握二次函数的定义.

 

11.在RtABC中,C=90°AB=2BC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,则sin <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> =  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>  

【考点】T5:特殊角的三角函数值.

【专题】填空题

【分析】根据A的正弦求出A=60°,再根据30°的正弦值求解即可.

【解答】解:sinA= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

∴∠A=60°

sin <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> =sin30°= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

故答案为: <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【点评】本题考查了特殊角的三角函数值,熟记30°45°60°角的三角函数值是解题的关键.

 

12.如图,BC是一条河的直线河岸,点A是河岸BC对岸上的一点,ABBCB,站在河岸CC处测得BCA=50°BC=10m,则桥长AB= 11.9 m(用计算器计算,结果精确到0.1米)

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】T8:解直角三角形的应用.

【专题】填空题

【分析】RtABC中,tanBCA= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,由此可以求出AB之长.

【解答】解:在ABC中,

BCBAtanBCA= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

BC=10mBCA=50°

AB=BC•tan50°=10×tan50°11.9m

故答案为11.9

【点评】此题考查了正切的概念和运用,关键是把实际问题转化成数学问题,把它抽象到直角三角形中来.

 

13.如图,在直角BAD中,延长斜边BD到点C,使DC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> BD,连接AC,若tanB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,则tanCAD的值  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>  

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】T7:解直角三角形.

【专题】填空题

【分析】延长AD,过点CCEAD,垂足为E,由tanB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,即 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,设AD=5x,则AB=3x,然后可证明CDE∽△BDA,然后相似三角形的对应边成比例可得: <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,进而可得CE= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> xDE= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> x,从而可求tanCAD= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【解答】解:如图,延长AD,过点CCEAD,垂足为E

tanB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,即 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

AD=5x,则AB=3x

∵∠CDE=BDACED=BAD

∴△CDE∽△BDA

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

CE= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> xDE= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> x

AE= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

tanCAD= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

故答案为 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【点评】本题考查了锐角三角函数的定义,相似三角形的判定和性质以及直角三角形的性质,是基础知识要熟练掌握,解题的关键是:正确添加辅助线,将CAD放在直角三角形中.

 

14.如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40km,仰角是30°n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是 (20 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ﹣20) km

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】TA:解直角三角形的应用﹣仰角俯角问题.

【专题】填空题

【分析】分别在RtALRRtBLR中,求出ALBL即可解决问题.

【解答】解:在RtARL中,

LR=AR•cos30°=40× <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> =20 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> km),AL=AR•sin30°=20km),

RtBLR中,∵∠BRL=45°

RL=LB=20 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

AB=LB﹣AL=20 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ﹣20km

故答案为(20 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ﹣20km

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的概念解决问题.

 

15.计算:tan260°﹣2sin30°﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> cos45°

【考点】T5:特殊角的三角函数值.

【专题】解答题

【分析】将特殊角的三角函数值代入求解.

【解答】解:原式= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>2﹣2× <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> × <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

=3﹣1﹣1

=1

【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.

 

16.计算: <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> + <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>1﹣4cos45°﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>0

【考点】T5:特殊角的三角函数值;6E:零指数幂;6F:负整数指数幂.

【专题】解答题

【分析】先根据二次根式的化简、负整数指数幂、特殊角的三角函数值及0指数幂把原式化简,再根据实数混合运算的法则进行计算即可.

【解答】解:原式=2 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> +2﹣4× <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ﹣1

=2 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> +2﹣2 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ﹣1

=1

故答案为:1

【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂及二次根式等考点的运算.

 

17.如图,某商店营业大厅自动扶梯AB的倾斜角为31°AB的长为12米,求大厅的距离AC的长.(结果精确到0.1米)(参考数据:sin31°=0.515cos31°=0.857tan31°=0.60

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】T9:解直角三角形的应用﹣坡度坡角问题.

【专题】解答题

【分析】利用余弦函数的定义即可求出AC的长.

【解答】解:过B作地平面的垂线段BC,垂足为C

RtABC中,∵∠ACB=90°

AC=AB•cosBAC=12×0.85710.3(米).

即大厅的距离AC的长约为10.3米.

【点评】本题考查了解直角三角形的应用﹣坡度坡角问题,把坡面与水平面的夹角α叫做坡角.在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.

 

18.如图,信号塔PQ座落在坡度i=12的山坡上,其正前方直立着一警示牌.当太阳光线与水平线成60°角时,测得信号塔PQ落在斜坡上的影子QN长为2 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> 米,落在警示牌上的影子MN长为3米,求信号塔PQ的高.(结果不取近似值)

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】T9:解直角三角形的应用﹣坡度坡角问题;U5:平行投影.

【专题】解答题

【分析】如图作MFPQFQEMNE,则四边形EMFQ是矩形.分别在RtEQNRtPFM中解直角三角形即可解决问题.

【解答】解:如图作MFPQFQEMNE,则四边形EMFQ是矩形.

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

RtQEN中,设EN=x,则EQ=2x

QN2=EN2+QE2

20=5x2

x0

x=2

EN=2EQ=MF=4

MN=3

FQ=EM=1

RtPFM中,PF=FM•tan60°=4 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

PQ=PF+FQ=4 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> +1

【点评】本题考查了解直角三角形的应用﹣坡度问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.

 

19.如图,某人为了测量小山顶上的塔ED的高,他在山下的点A处测得塔尖点D的仰角为45°,再沿AC方向前进60m到达山脚点B,测得塔尖点D的仰角为60°,塔底点E的仰角为30°,求塔ED的高度.(结果保留根号)

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】TA:解直角三角形的应用﹣仰角俯角问题.

【专题】解答题

【分析】先求出DBE=30°BDE=30°,得出BE=DE,然后设EC=xm,则BE=2xmDE=2xmDC=3xmBC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> xm,然后根据DAC=45°,可得AC=CD,列出方程求出x的值,然后即可求出塔DE的高度.

【解答】解:由题知,DBC=60°EBC=30°

∴∠DBE=DBC﹣EBC=60°﹣30°=30°

∵∠BCD=90°

∴∠BDC=90°﹣DBC=90°﹣60°=30°

∴∠DBE=BDE

BE=DE

EC=xm,则DE=BE=2EC=2xmDC=EC+DE=x+2x=3xm

BC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> x

由题知,DAC=45°DCA=90°AB=20

∴△ACD为等腰直角三角形,

AC=DC

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> x+60=3x

解得:x=30+10 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

2x=60+20 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

答:塔高约为(60+20 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> m

【点评】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形,利用三角函数的知识求解,难度一般.

 

20.耸立在临清市城北大运河东岸的舍利宝塔,是“运河四大名塔”之一(如图1).数学兴趣小组的小亮同学在塔上观景点P处,利用测角仪测得运河两岸上的AB两点的俯角分别为17.9°22°,并测得塔底点C到点B的距离为142米(ABC在同一直线上,如图2),求运河两岸上的AB两点的距离(精确到1米).

(参考数据:sin22°0.37cos22°0.93tan22°0.40sin17.9°0.31cos17.9°0.95tan17.9°0.32 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】TA:解直角三角形的应用﹣仰角俯角问题.

【专题】解答题

【分析】RtPBC中,求出BC,在RtPAC中,求出AC,根据AB=AC﹣BC计算即可.

【解答】解:根据题意,BC=142米,PBC=22°PAC=17.9°

RtPBC中,tanPBC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

PC=BCtanPBC=142•tan22°

RtPAC中,tanPAC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

AC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> 177.5

AB=AC﹣BC=177.5﹣14236米.

答:运河两岸上的AB两点的距离为36米.

【点评】解直角三角形的应用﹣仰角俯角问题、锐角三角函数等知识,解题的关键是正确寻找直角三角形,利用三角函数解决问题,属于中考常考题型.

 

21.如图,为了测得一棵树的高度AB,小明在D处用高为1m的测角仪CD,测得树顶A的仰角为45°,再向树方向前进10m,又测得树顶A的仰角为60°,求这棵树的高度AB

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】TA:解直角三角形的应用﹣仰角俯角问题.

【专题】解答题

【分析】AG=x,分别在RtAFGRtACG中,表示出CGGF的长度,然后根据DE=10m,列出方程即可解决问题.

【解答】解:设AG=x

RtAFG中,

tanAFG= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

FG= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

RtACG中,∵∠GCA=45°

CG=AG=x

DE=10

x﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> =10

解得:x=15+5 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

AB=15+5 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> +1=16+5 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> (米).

答:这棵树的高度AB为(16+5 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> )米.

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.