当前位置:首页 > 九年级 > 数学试卷

【331615】北师大版九年级(下)第一章 单元测试卷1

时间:2025-02-07 10:07:03 作者: 字数:29231字
简介:

单元测试卷(

一、选择题

1.计算:cos245°+sin245°=(  )

A <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> B1 C <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> D <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

2.在RtABC中,各边的长度都扩大两倍,那么锐角A的各三角函数值(  )

A.都扩大两倍 B.都缩小两倍 C.不变 D.都扩大四倍

3.如图,在RtABC中,C=Rtabc分别是ABC的对边,下列结论正确的是(  )

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

AcsinA=a BbcosB=c CatanA=b DtanB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

4.如图,在ABC中,BAC=90°AB=AC,点D为边AC的中点,DEBC于点E,连接BD,则tanDBC的值为(  )

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

A <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> B <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>1 C2﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> D <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

5.如图,在网格中,小正方形的边长均为1,点ABC都在格点上,则ABC的正切值是(  )

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

A2 B <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> C <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> D <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

6.已知在RtABC中,C=90°sinA= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,则tanB的值为(  )

A <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> B <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> C <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> D <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

7.如图,一个小球由地面沿着坡度i=12的坡面向上前进了10m,此时小球距离地面的高度为(  )

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

A5 m B2 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> m C4 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> m D <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> m

8.如图,在菱形ABCD中,DEAB <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>BE=2,则tanDBE的值(  )

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

A <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> B2 C <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> D <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

9.直角三角形两直角边和为7,面积为6,则斜边长为(  )

A5 B <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> C7 D <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

10.如图,某飞机在空中A处探测到它的正下方地平面上目标C,此时飞行高度AC=1 200m,从飞机上看地平面指挥台B的俯角α=30°,则飞机A与指挥台B的距离为(  )

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

A1 200 m B1 200 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> m C1 200 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> m D2 400 m


二、填空题

11.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行   米.

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

12.如图,有一滑梯AB,其水平宽度AC5.3米,铅直高度BC2.8米,则A的度数约为   (用科学计算器计算,结果精确到0.1°).

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

13.小兰想测量南塔的高度.她在A处仰望塔顶,测得仰角为30°,再往塔的方向前进50mB处,测得仰角为60°,那么塔高约为  m.(小兰身高忽略不计,取 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

14.等腰三角形的腰长为2,腰上的高为1,则它的底角等于   

15.如图,已知RtABC中,斜边BC上的高AD=4cosB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,则AC=   

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

16.如图,ABC的顶点都在方格纸的格点上,则sinA=

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

17.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cmCBD=40°,则点BCD的距离为   cm(参考数据sin20°0.342cos20°0.940sin40°0.643cos40°0.766,结果精确到0.1cm,可用科学计算器).

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

18.如图,在四边形ABCD中,A=60°B=D=90°BC=6CD=9,则AB=

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>


三、解答题

19.计算下列各题:

(1) <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> 2cos45°﹣sin60°+ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

(2)(﹣20﹣3tan30°+| <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ﹣2|


20.在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树(如图)的高度,设计的方案及测量数据如下:

(1)在大树前的平地上选择一点A,测得由点A看大树顶端C的仰角为35°

(2)在点A和大树之间选择一点BABD在同一直线上),测得由点B看大树顶端C的仰角恰好为45°

(3)量出AB两点间的距离为4.5米.

请你根据以上数据求出大树CD的高度.(精确到0.1米)(可能用到的参考数据:sin35°0.57cos35°0.82tan35°0.70

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

21.每年的515日是”世界助残日”,我区时代超市门前的台阶共高出地面1.2米,为帮助残疾人,便于轮椅行走,准备拆除台阶换成斜坡,又考虑安全,轮椅行走斜坡的坡角不得超过,已知此商场门前的人行道距门前垂直距离为8米(斜坡不能修在人行道上),问此商场能否把台阶换成斜坡?(参考数据:sin9°=0.1564cos9°=0.9877tan9°=0.1584

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>



22.如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> =1.732,结果精确到1m

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

 

23.已知:如图,在山脚的A处测得山顶D的仰角为45°,沿着坡度为30°的斜角前进400米处到B处(即BAC=30°AB=400米),测得D的仰角为60°,求山的高度CD

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>



24.一段路基的横断面是直角梯形,如图1,已知原来坡面的坡角α的正弦值为0.6,现不改变土石方量,全部利用原有土石方进行坡面改造,使坡度变小,达到如右下图2的技术要求.试求出改造后坡面的坡度是多少?

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>


25.如图,已知RtABC中,ACB=90°CD是斜边AB上的中线,过点AAECDAE分别与CDCB相交于点HEAH=2CH

(1)sinB的值;

(2)如果CD= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,求BE的值.

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>



26.如图,在南北方向的海岸线MN上,有AB两艘巡逻船,现均收到故障船c的求救信号.已知AB两船相距100 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> +3)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.

(1)分别求出ACAD之间的距离ACAD(如果运算结果有根号,请保留根号).

(2)已知距观测点D200海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据: <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> 1.41 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> 1.73

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>












参考答案与试题解析

 

1.计算:cos245°+sin245°=(  )

A <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> B1 C <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> D <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】T5:特殊角的三角函数值.

【专题】选择题

【分析】首先根据cos45°=sin45°= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,分别求出cos245°sin245°的值是多少;然后把它们求和,求出cos245°+sin245°的值是多少即可.

【解答】解:cos45°=sin45°= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

cos245°+sin245°

= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

=1

故选B

【点评】此题主要考查了特殊角的三角函数值,要熟练掌握,解答此类问题的关键是要明确:(130°45°60°角的各种三角函数值;(2)一个角正弦的平方加余弦的平方等于1

 

2.在RtABC中,各边的长度都扩大两倍,那么锐角A的各三角函数值(  )

A.都扩大两倍 B.都缩小两倍 C.不变 D.都扩大四倍

【考点】T1:锐角三角函数的定义.

【专题】选择题

【分析】根据三边对应成比例,两三角形相似,可知扩大后的三角形与原三角形相似,再根据相似三角形对应角相等解答.

【解答】解:各边的长度都扩大两倍,

扩大后的三角形与RtABC相似,

锐角A的各三角函数值都不变.

故选C

【点评】本题考查了锐角三角形函数的定义,理清锐角的三角函数值与角度有关,与三角形中所对应的边的长度无关是解题的关键.

 

3.如图,在RtABC中,C=Rtabc分别是ABC的对边,下列结论正确的是(  )

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

AcsinA=a BbcosB=c CatanA=b DtanB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】T1:锐角三角函数的定义.

【专题】选择题

【分析】本题可以利用锐角三角函数的定义求解即可.

【解答】解:A、在RtABC中,C=90°

sinA= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> csinA=a,正确;

B、在RtABC中,C=90°

cosB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,本项错误;

C、在RtABC中,C=90°

tanA= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> btanA=a,本项错误;

D、在RtABC中,C=90°

tanB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,本项错误,

故选A

【点评】本题考查了锐角三角函数的定义.解答此题关键是正确理解和运用锐角三角函数的定义.

 

4.如图,在ABC中,BAC=90°AB=AC,点D为边AC的中点,DEBC于点E,连接BD,则tanDBC的值为(  )

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

A <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> B <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>1 C2﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> D <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】T7:解直角三角形;KW:等腰直角三角形.

【专题】选择题

【分析】利用等腰直角三角形的判定与性质推知BC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ACDE=EC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> DC,然后通过解直角DBE来求tanDBC的值.

【解答】解:ABC中,BAC=90°AB=AC

∴∠ABC=C=45°BC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> AC

D为边AC的中点,

AD=DC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> AC

DEBC于点E

∴∠CDE=C=45°

DE=EC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> DC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> AC

tanDBC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

故选A

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【点评】本题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.

 

5.如图,在网格中,小正方形的边长均为1,点ABC都在格点上,则ABC的正切值是(  )

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

A2 B <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> C <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> D <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】T1:锐角三角函数的定义;KQ:勾股定理;KS:勾股定理的逆定理.

【专题】选择题

【分析】根据勾股定理,可得ACAB的长,根据正切函数的定义,可得答案.

【解答】解:如图: <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

由勾股定理,得

AC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> AB=2 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> BC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

∴△ABC为直角三角形,

tanB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

故选D

【点评】本题考查了锐角三角函数的定义,先求出ACAB的长,再求正切函数.

 

6.已知在RtABC中,C=90°sinA= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,则tanB的值为(  )

A <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> B <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> C <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> D <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】T1:锐角三角函数的定义;T4:互余两角三角函数的关系.

【专题】选择题

【分析】本题可以利用锐角三角函数的定义求解,也可以利用互为余角的三角函数关系式求解.

【解答】解:解法1:利用三角函数的定义及勾股定理求解.

RtABC中,C=90°

sinA= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> tanB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> a2+b2=c2

sinA= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,设a=3x,则c=5x,结合a2+b2=c2b=4x

tanB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

解法2:利用同角、互为余角的三角函数关系式求解.

AB互为余角,

cosB=sin90°﹣B=sinA= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

sin2B+cos2B=1

sinB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

tanB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

故选A

【点评】求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.

 

7.如图,一个小球由地面沿着坡度i=12的坡面向上前进了10m,此时小球距离地面的高度为(  )

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

A5 m B2 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> m C4 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> m D <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> m

【考点】T9:解直角三角形的应用﹣坡度坡角问题.

【专题】选择题

【分析】可利用勾股定理及所给的比值得到所求的线段长.

【解答】解:AB=10米,tanA= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

BC=xAC=2x

由勾股定理得,AB2=AC2+BC2,即100=x2+4x2,解得x=2 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

AC=4 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> BC=2 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> 米.

故选B

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【点评】本题主要考查了解直角三角形的应用﹣坡度坡角问题,能从实际问题中整理出直角三角形是解答本题的关键.

 

8.如图,在菱形ABCD中,DEAB <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>BE=2,则tanDBE的值(  )

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

A <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> B2 C <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> D <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】T7:解直角三角形;L8:菱形的性质.

【专题】选择题

【分析】在直角三角形ADE中,cosA= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,求得ADAE.再求得DE,即可得到tanDBE= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【解答】解:设菱形ABCD边长为t

BE=2

AE=t﹣2

cosA= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

t=5

AE=5﹣2=3

DE= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> =4

tanDBE= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> =2

故选B

【点评】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.

 

9.直角三角形两直角边和为7,面积为6,则斜边长为(  )

A5 B <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> C7 D <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】AD:一元二次方程的应用;KQ:勾股定理.

【专题】选择题

【分析】可设直角三角形一直角边为x,则另一直角边为7﹣x,由面积为6作为相等关系列方程求得x的值,进而求得斜边的长.

【解答】解:设直角三角形一直角边为x,则另一直角边为7﹣x

根据题意得 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> x7﹣x=6

解得x=3x=4

所以斜边长为 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

故选A

【点评】可根据直角三角形的面积公式列出关于直角边的方程,解得直角边的长再根据勾股定理求斜边的长.熟练运用勾股定理和一元二次方程是解题的关键.

 

10.如图,某飞机在空中A处探测到它的正下方地平面上目标C,此时飞行高度AC=1 200m,从飞机上看地平面指挥台B的俯角α=30°,则飞机A与指挥台B的距离为(  )

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

A1 200 m B1 200 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> m C1 200 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> m D2 400 m

【考点】TA:解直角三角形的应用﹣仰角俯角问题.

【专题】选择题

【分析】首先根据图示,可得ABC=α=30°,然后在RtABC中,用AC的长度除以sin30°,求出飞机A与指挥台B的距离为多少即可.

【解答】解:∵∠ABC=α=30°

AB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> =2400m),

即飞机A与指挥台B的距离为2400m

故选D

【点评】此题主要考查了解直角三角形的应用﹣仰角俯角问题,要熟练掌握,解答此题的关键是要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.

 

11.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行 10 米.

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】KU:勾股定理的应用.

【专题】填空题

【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.

【解答】解:如图,设大树高为AB=12m

小树高为CD=6m

C点作CEABE,则四边形EBDC是矩形,

连接AC

EB=6mEC=8mAE=AB﹣EB=12﹣6=6m),

RtAEC中,

AC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> =10m).

故小鸟至少飞行10m

故答案为:10

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【点评】本题考查了勾股定理的应用,根据实际得出直角三角形,培养学生解决实际问题的能力.

 

12.如图,有一滑梯AB,其水平宽度AC5.3米,铅直高度BC2.8米,则A的度数约为 27.8° (用科学计算器计算,结果精确到0.1°).

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】T9:解直角三角形的应用﹣坡度坡角问题.

【专题】填空题

【分析】直接利用坡度的定义求得坡角的度数即可.

【解答】解:tanA= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> 0.5283

∴∠A=27.8°

故答案为:27.8°

【点评】本题考查了坡度坡角的知识,解题时注意坡角的正切值等于铅直高度与水平宽度的比值,难度不大.

 

13.小兰想测量南塔的高度.她在A处仰望塔顶,测得仰角为30°,再往塔的方向前进50mB处,测得仰角为60°,那么塔高约为 43.3 m.(小兰身高忽略不计,取 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】TA:解直角三角形的应用﹣仰角俯角问题.

【专题】填空题

【分析】从题意可知AB=BD=50m,至B处,测得仰角为60°sin60°= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> .可求出塔高.

【解答】解:∵∠DAB=30°DBC=60°

BD=AB=50m

DC=BD•sin60°=50× <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> =43.3

故答案为:43.3

【点评】本题考查仰角的定义,要求学生能借助仰角找到直角三角形各边之间的联系,从而求解.

 

14.等腰三角形的腰长为2,腰上的高为1,则它的底角等于 15°75°. 

【考点】KH:等腰三角形的性质;KQ:勾股定理.

【专题】填空题

【分析】此题分两种情况,当顶角为锐角时,利用勾股定理,AD的长,然后即可得出ABD=60°,可得顶角度数.同理即可求出顶角为钝角时,底角的度数.

【解答】解;如图1ABC中,AB=AC=2BD为腰上的高,且BD=1

顶角为锐角,

AD2=AB2﹣BD2

AD2=4﹣1=3

AD= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

∴∠ABD=60°

顶角为30°,底角为75°

如图2ABC中,AB=AC=2BD为腰上的高,且BD=1

顶角为钝角

同理可得,底角为15°

故答案为:15°75°

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【点评】此题主要考查学生对等腰三角形性质的理解和掌握,解答此题的关键是利用分类讨论的思想进行分析,对顶角为锐角和顶角为钝角时分别进行分析.

 

15.如图,已知RtABC中,斜边BC上的高AD=4cosB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,则AC= 5 

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】T7:解直角三角形.

【专题】填空题

【分析】根据题中所给的条件,在直角三角形中解题.根据角的正弦值与三角形边的关系,可求出AC

【解答】解:RtABC中,cosB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

sinB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> tanB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

RtABDAD=4

AB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

RtABC中,

tanB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

AC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> × <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> =5

【点评】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.

 

16.如图,ABC的顶点都在方格纸的格点上,则sinA=  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>  

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】T1:锐角三角函数的定义.

【专题】填空题

【分析】在直角ABD中利用勾股定理求得AD的长,然后利用正弦的定义求解.

【解答】解:在直角ABD中,BD=1AB=2

AD= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

sinA= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

故答案是: <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.

 

17.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cmCBD=40°,则点BCD的距离为 14.1 cm(参考数据sin20°0.342cos20°0.940sin40°0.643cos40°0.766,结果精确到0.1cm,可用科学计算器).

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】T8:解直角三角形的应用.

【专题】填空题

【分析】BECDE,根据等腰三角形的性质和CBD=40°,求出CBE的度数,根据余弦的定义求出BE的长.

【解答】解:如图2,作BECDE

BC=BDCBD=40°

∴∠CBE=20°

RtCBE中,cosCBE= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

BE=BC•cosCBE

=15×0.940

=14.1cm

故答案为:14.1

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【点评】本题考查的是解直角三角形的应用,掌握锐角三角函数的概念是解题的关键,作出合适的辅助线构造直角三角形是解题的重要环节.

 

18.如图,在四边形ABCD中,A=60°B=D=90°BC=6CD=9,则AB= 8 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>  

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】KQ:勾股定理;KO:含30度角的直角三角形.

【专题】填空题

【分析】过点DDEAB于点ECFDEF,可得四边形BCFE为矩形,根据A=60°,可得出ADE=30°,根据D=90°,可求得CDE=60°DCF=30°,在CDF中,根据CD=9,分别求出CFDF的长度,然后在ADE中,求出AE的长度,继而可求出AB的长度.

【解答】解:过点DDEAB于点ECFDEF

则有四边形BCFE为矩形,BC=EFBE=CF

∵∠A=60°

∴∠ADE=30°

∵∠D=90°

∴∠CDE=60°DCF=30°

CDF中,

CD=9

CF= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> CD= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> CF= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> CD= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

EF=BC=6

DE=EF+DF=6+ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

AE= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

AB=AE+BE= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> + <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> =8 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

故答案为:8 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【点评】本题考查了勾股定理的知识以及含30度角的直角三角形的性质,注意掌握在直角三角形中,30°角所对的直角边等于斜边的一半,难度一般.

 

19.计算下列各题:

(1) <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> 2cos45°﹣sin60°+ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

(2)(﹣20﹣3tan30°+| <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ﹣2|

【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.

【专题】解答题

【分析】(1)原式利用特殊角的三角函数值化简,合并同类二次根式化简得到结果;

(2)原式第一项利用零指数幂法则计算,第二项利用特殊角的三角函数值化简,最后一项利用绝对值的代数意义化简,计算即可得到结果.

【解答】解:(1)原式= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ×2× <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> + <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> =2﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> + <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> =2

(2)原式=1﹣3× <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> +2﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> =3﹣2 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【点评】此题考查了实数的运算,涉及的知识有:零指数、负指数幂,特殊角的三角函数值,以及绝对值的代数意义,熟练掌握运算法则是解本题的关键.

 

20.在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树(如图)的高度,设计的方案及测量数据如下:

(1)在大树前的平地上选择一点A,测得由点A看大树顶端C的仰角为35°

(2)在点A和大树之间选择一点BABD在同一直线上),测得由点B看大树顶端C的仰角恰好为45°

(3)量出AB两点间的距离为4.5米.

请你根据以上数据求出大树CD的高度.(精确到0.1米)(可能用到的参考数据:sin35°0.57cos35°0.82tan35°0.70

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】TA:解直角三角形的应用﹣仰角俯角问题.

【专题】解答题

【分析】首先分析图形:本题涉及到两个直角三角形DBCADC,应利用其公共边CD构造等量关系,借助AB=AD﹣DB=4.5构造方程关系式,进而可求出答案.

【解答】解:设CD=x米;

∵∠DBC=45°

DB=CD=xAD=x+4.5

RtACD中,tanA= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

tan35°= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

解得:x=10.5

所以大树的高为10.5米.

解法2:在RtACD中,tanA= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> AD= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

RtBCD中,tanCBD= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> BD= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

AD﹣BD=4.5

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> =4.5

解得:CD=10.5

所以大树的高为10.5米.

【点评】本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形,并结合图形利用三角函数解直角三角形.

 

21.每年的515日是”世界助残日”,我区时代超市门前的台阶共高出地面1.2米,为帮助残疾人,便于轮椅行走,准备拆除台阶换成斜坡,又考虑安全,轮椅行走斜坡的坡角不得超过,已知此商场门前的人行道距门前垂直距离为8米(斜坡不能修在人行道上),问此商场能否把台阶换成斜坡?(参考数据:sin9°=0.1564cos9°=0.9877tan9°=0.1584

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】T9:解直角三角形的应用﹣坡度坡角问题.

【专题】解答题

【分析】先求得拆除台阶换成斜坡后的坡角,与比较,再判断是否能把楼梯换成斜坡.

【解答】解:由于台阶共高出地面1.2米,商场门前的人行道距门前垂直距离为8米,

则拆除台阶换成斜坡后的坡角的正切值为tanα= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> =0.15tan9°

因此,此商场能把台阶换成斜坡.

【点评】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.

 

22.如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> =1.732,结果精确到1m

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】TA:解直角三角形的应用﹣仰角俯角问题.

【专题】解答题

【分析】根据CE=xm,则由题意可知BE=xmAE=x+100m,再利用解直角得出x的值,即可得出CD的长.

【解答】解:设CE=xm,则由题意可知BE=xmAE=x+100m

RtAEC中,tanCAE= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

tan30°= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

3x= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> x+100),

解得x=50+50 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> =136.6

CD=CE+ED=136.6+1.5=138.1138m).

答:该建筑物的高度约为138m

【点评】此题主要考查了解直角三角形的应用,根据tanCAE= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> 得出x的值是解决问题的关键.

 

23.已知:如图,在山脚的A处测得山顶D的仰角为45°,沿着坡度为30°的斜角前进400米处到B处(即BAC=30°AB=400米),测得D的仰角为60°,求山的高度CD

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】TA:解直角三角形的应用﹣仰角俯角问题.

【专题】解答题

【分析】RtAFB中,根据AB=400米,BAF=30°,求出BFAF的长度,然后证明四边形BFCE是矩形,设BE=x米,在RtBDE中,用x表示出DE的长度,然后根据AC=DC,代入求出x的值,继而可求得山高.

【解答】解:过BBFACF

RtAFB中,

AB=400米,BAF=30°

BF= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> AB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ×400=200(米),

AF=AB•cos30°=200 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> (米),

BFACBEDC

四边形BFCE是矩形,

EC=BF=200米,

BE=x米,则FC=x米,

RtDBE中,

∵∠DBE=60°

DE=tan60°•BE= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> x(米),

∵∠DAC=45°C=90°

∴∠ADC=45°

AC=DC

AC=AF+FC=200 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> +x)米,

DC=DE+EC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> x+200)米,

解得:x=200

DC=DE+EC=200 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> +200(米).

答:山的高度BC约为(200 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> +200)米.

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【点评】本题考查了解直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数的知识解直角三角形,难度一般.

 

24.一段路基的横断面是直角梯形,如图1,已知原来坡面的坡角α的正弦值为0.6,现不改变土石方量,全部利用原有土石方进行坡面改造,使坡度变小,达到如右下图2的技术要求.试求出改造后坡面的坡度是多少?

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】T9:解直角三角形的应用﹣坡度坡角问题.

【专题】解答题

【分析】由已知可求EC=40m.在不改变土石方量,全部充分利用原有土石方的前提下进行坡面改造,使坡度变小,则梯形ABCD面积=梯形A1B1C1D面积,可再求出EC1=80m),即可求出改建后的坡度i=B1EEC1=2080=14

【解答】解:由图可知:BEDCBE=30msinα=0.6

RtBEC中,

sinα= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

BC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> =50m),

RTBECEC2=BC2﹣BE2BE=30m

由勾股定理得,EC=40m

在不改变土石方量,全部充分利用原有土石方的前提下进行坡面改造,使坡度变小,

则梯形ABCD面积=梯形A1B1C1D面积,

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ×20+60×30= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ×2020+20+EC1

解得EC1=80m),

改建后的坡度i=B1EEC1=2080=14

【点评】此题主要是运用所学的解直角三角形的知识解决实际生活中的问题.分析梯形ABCD面积=梯形A1B1C1D面积,是解题的关键;还要熟悉坡度公式.

 

25.如图,已知RtABC中,ACB=90°CD是斜边AB上的中线,过点AAECDAE分别与CDCB相交于点HEAH=2CH

(1)sinB的值;

(2)如果CD= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,求BE的值.

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】T7:解直角三角形;KP:直角三角形斜边上的中线.

【专题】解答题

【分析】(1)根据ACB=90°CD是斜边AB上的中线,可得出CD=BD,则B=BCD,再由AECD,可证明B=CAH,由AH=2CH,可得出CHAC=1 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,即可得出sinB的值;

(2)根据sinB的值,可得出ACAB=1 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,再由AB=2 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,得AC=2,则CE=1,从而得出BE

【解答】解:(1)∵∠ACB=90°CD是斜边AB上的中线,

CD=BD

∴∠B=BCD

AECD

∴∠CAH+∠ACH=90°

ACB=90°

∴∠BCD+∠ACH=90°

∴∠B=BCD=CAH,即B=CAH

AH=2CH

由勾股定理得AC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> CH

CHAC=1 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

sinB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>


(2)sinB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

ACAB=1 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

AC=2

∵∠CAH=B

sinCAH=sinB= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

CE=xx0),则AE= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> x,则x2+22= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> x2

CE=x=1AC=2

RtABC中,AC2+BC2=AB2

AB=2CD=2 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

BC=4

BE=BC﹣CE=3

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【点评】本题考查了解直角三角形,以及直角三角形斜边上的中线,注意性质的应用,难度不大.

 

26.如图,在南北方向的海岸线MN上,有AB两艘巡逻船,现均收到故障船c的求救信号.已知AB两船相距100 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> +3)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.

(1)分别求出ACAD之间的距离ACAD(如果运算结果有根号,请保留根号).

(2)已知距观测点D200海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据: <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> 1.41 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> 1.73

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【考点】TB:解直角三角形的应用﹣方向角问题.

【专题】解答题

【分析】(1)CEAB于点E,则ABC=45°BAC=60°,设AE=x海里,在RtAEC中,CE=AE•tan60°,在RtBCE中,BE=CE= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> x,由AE+BE=x+ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> x=1003+ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> )求出x的值,再根据AC=2x得出AC的值,在ACD中,由DAC=60°ADC=75°得出ACD=45°.过点DDFAC于点F,设AF=y,则DF=CF= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> y,根据AC=y+ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> y=200 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> 求出y的值,故可得出AD的长,进而得出结论;

(2)根据(1)中的结论得出DF的长,再与200相比较即可.

【解答】解:(1)CEAB于点E,则ABC=45°BAC=60°,设AE=x海里,

RtAEC中,CE=AE•tan60°= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> x

RtBCE中,BE=CE= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> x

AE+BE=x+ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> x=1003+ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ),解得x=100 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

AC=2x=200 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

ACD中,

∵∠DAC=60°ADC=75°

∴∠ACD=45°

过点DDFAC于点F,设AF=y,则DF=CF= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> y

AC=y+ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> y=200 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ,解得y=1003﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ),

AD=2y=2003﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ).

答:AC之间的距离AC200 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> 海里,AD之间的距离AD2003﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> )海里;


(2)(1)可知,DF= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> AF= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> ×1003﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> 219

219200

巡逻船A沿直线AC去营救船C,在去营救的途中无触暗礁危险.

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a>

【点评】本题考查的是解直角三角形的应用﹣方向角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.