当前位置:首页 > 七年级 > 数学试卷

【333772】第五章 相交线与平行线周周测8(全章)

时间:2025-02-11 19:38:14 作者: 字数:7011字
简介:

第五章 相交线与平行线周周测8

选择题

1.下列选项中能由左图平移得到的是(  )

 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>     A. <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> B. <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>   C. <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>     D. <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>

2.四边形ABCD下列各图中12相等的是(  )

 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>

3.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在(  )

 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>

A.A点      B.B        C.C点       D.D

4.将命题对顶角相等写成如果……,那么……”的形式,正确的是(  

A.如果两个角相等,那么它们是对顶角 B.如果两个角是对顶角,那么它们相等

C.如果对顶角,那么相等 D.如果两个角不是对顶角,那么这两个角不相等

5.如图,与1是同旁内角的是(  )

 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>

  A.∠2 B.∠3 C.∠4 D.∠5

 

6.如图,AB//CD,∠AGE=128°,HM平分EHD,MHD的度数是(    

   <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>

A.46°    B.23°      C.26°      D.24°

7.如图,下列条件中,不能判断直线l1∥l2的是(    

   <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>

A.∠1=∠3    B.∠4=∠5     C.∠2=∠3    D.∠2+∠4=180°

8.如图,直线l1∥l2,若1=140°2=70°,则3的度数是(  )

 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> C

A.60°  B.65°   C.70°  D.80°

9.如图,已知AD∥BCB=30°DB平分ADE,则DEC=(  )

 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>

A.30°    B.60°    C.90°    D.120°


10.如图,已知AB∥DEABC=70ºCDE=140º,则BCD的值为(    )

 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>

A.70º B.50º  C.40º D.30º

填空题

11.如图,将三角形ABC沿BC’方向平移4cm,得到三角形A’B’C’,那么CC’=      cm.

 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>

12.将一个直角三角板和一把长方形直尺按如图放置,若α=54°,则β的度数是______.

 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>

13.如图,把矩形ABCD沿EF对折后使两部分重合,若1=40°,则AEF=  .

 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>

14.如图,直线a∥b,三角板的直角顶点A落在直线a <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> ,两条直角边分别交直线bBC两点.1=42°,则2的度数是     .

 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>

15.如图,AB∥CDB=160°D=120°,则E=_________

 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>

16.如图MA1∥NA2,图MA1∥NA3,图MA1∥NA4,图MA1∥NA5,则第n个图中的A1A2A3An+1=       °(用含n的代数式表示).

 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>

解答题

17.完成下面的证明:已知,如图,AB∥CD∥GHEG平分BEFFG平分EFD.

求证:EGF=90°.

证明:HG∥AB(已知)

 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> ∴∠1=∠3______ .

HG∥CD(已知)

∴∠2=∠4.

AB∥CD(已知)

∴∠BEF+______=180°______ .

EG平分BEF(已知)

∴∠1= <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> ∠______.

FG平分EFD(已知)

∴∠2= <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> ∠______

∴∠1+∠2= <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> ______ ),

∴∠1+∠2=90°

∴∠3+∠4=90°______ ),EGF=90°.


18.如图是一个汉字字,其中, <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>  <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> 1=∠2 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> =∠ <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> .

求证: <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> =∠ <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> .

 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>


19.如图,CD⊥ABD,点FBC上任意一点,FE⊥ABE,且1=∠23=80°.

1)证明B=∠ADG;(2)求BCA的度数.
 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>



20.如图,EF∥ADAD∥BCCE平分BCFDAC=120°ACF=20°,求FEC的度数.

 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>









21.如图,已知DC∥FP1=∠2FED=28ºAGF=80ºFH平分EFG.

(1)证明DC∥AB(2)PFH的度数.

 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>







22.如图,已知AB∥CDCD的右侧,BM平分ABCDN平分ADCBMDN所在直线交于点EADC =70°.

1)求EDC的度数;

2)若ABC =n°,求BED的度数(用含n的代数式表示);

3)将线段BC沿DC方向平移, 使得点B在点A的右侧,其他条件不变,画出图形并判断BED的度数是否改变,若改变,求出它的度数(用含n的式子表示);若不改变,请说明理由.

 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>




























相交线与平行线周周测8参考答案与解析

一、选择题

1.C 2.B 3.A 4.B 5.A 6.C 7.C 8.C 9.B 10.D


二、填空题

11.4   12.36° 13.110° 14.48° 15.416.180n


三、解答题

17.两直线平行,内错角相等 EFD 两直线平行,同旁内角互补 BEF EFD

BEF+∠EFD 等量代换


18.证明:如图,延长 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>  <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> 于点 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> .

 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>

 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>  <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> ∴∠1=∠3 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> .

又∵∠1=∠2,∴∠2=∠3,∴ <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> HN,∴∠ <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> =∠ <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> .

又∵ <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> =∠ <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> ∴∠ <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> =∠ <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> .                 


19.1)证明:∵CD⊥ABFE⊥AB,∴CD∥EF, ∴∠2=∠BCD.

∵∠1=∠2, ∴∠1=∠BCD,∴BC∥DG,∴∠B=∠ADG.

2)解:∵DG∥BC, ∴∠3=∠BCA.

∵∠3=80°,∴∠BCA=80°.


20.解:∵EF∥ADAD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°.

∵∠DAC=120°,∴∠ACB=60°.

又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°.

CE平分∠BCF,∴∠BCE=20°.

EF∥BC,∴∠FEC=∠BCE=20°.


21.(1) 证明:∵∠1=∠2,∴AB∥FP.∵DC∥FP,∴DC∥AB.

(2)解:DC∥FP,∴∠EFP=∠FED=28º.

AB∥FP,∴∠GFP=∠AGF=80º.∴∠EFG=∠EFP+∠GFP=28°+80°=108°.

FH平分∠EFG,∴∠EFH= <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> EFG= <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> ×108°=54°

∴∠PFH=∠EFH-∠EFP=54°-28°=26 º.


22.解:(1)∵DE平分∠ADC,∠ADC=70°,∴∠EDC= <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> ∠ADC= <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> ×70°=35°.

2如图,过点E向左EF∥AB.

  <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>

AB∥CD, ∴AB∥CD∥EF, ∴∠ABE=∠BEF,∠CDE=∠DEF.

BE平分∠ABCDE平分∠ADC,∠ABC=n°,∠ADC=70°

∴∠ABE= <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> ∠ABC= <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> ,∠CDE= <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> ∠ADC=35°,∴∠BED=∠BEF+∠DEF= <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> n°+35°.

3如图①,过点E向左EF∥AB.

BE平分∠ABCDE平分∠ADC,∠ABC=n°,∠ADC=70°

∴∠ABE= <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> ∠ABC= <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> ,∠CDE= <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> ∠ADC=35°.

AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°- <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> ,∠CDE=∠DEF=35°

∴∠BED=∠BEF+∠DEF=180°- <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> n°+35°=215°- <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> n°.

 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>     <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>

  图①     图②

如图②,过点E向左EF∥AB.

BM平分∠ABCDE平分∠ADC,∠ABC=n°,∠ADC=70°

∴∠ABM= <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> ∠ABC= <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> ,∠CDE= <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> ∠ADC=35°.

AB∥CD,∴AB∥CD∥EF,∴∠BEF=∠ABM= <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> ,∠CDE=∠DEF=35°

∴∠BED=∠BEF-∠DEF= <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> -35°.

综上所述,BED的度数发生了改为,改变为215° <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a>  <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/847/" title="相交" class="c1" target="_blank">相交</a> -35°.