当前位置:首页 > 七年级 > 数学试卷

【333639】第二章单元检测卷

时间:2025-02-11 19:25:37 作者: 字数:9161字
简介:

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 第二章 相交线与平行线 单元检测卷

一、选择题(每小题3分,共30)                  

1.下列图形中,∠1与∠2互为对顶角的是(  )

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

2.如图,O是直线AB上一点,若∠126°,则∠AOC的度数为(  )

A154° B144°

C116° D26°154°

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 2题图  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>3题图

3.如图,已知直线ab被直线c所截,那么∠1的同旁内角是(  )

A.∠3 B.∠4

C.∠5 D.∠6

4.下列作图能表示点ABC的距离的是(  )

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

5.如图,下列条件:①∠1=∠3;②∠2=∠3;③∠4=∠5;④∠2+∠4180°中,能判断直线l1l2的有(  )

A1B2

C3D4

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  第5题图

6.如图,直线ab与直线cd相交,已知∠1=∠2,∠3110°,则∠4的度数为(  )

A70° B80°

C110° D100°

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 6题图  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>7题图

7.如图,ABCDCDEF,则∠BCE等于(  )

A.∠2-∠1 B.∠1+∠2

C180°+∠1-∠2 D180°-∠1+∠2

8.如图,将一副三角板叠放在一起,使直角的顶点重合于点OABOCDCOB交于点E,则∠DEO的度数为(  )

A85° B70°

C75° D60°

  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>8题图 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>9题图

9.如图,EF分别是ABCD上的点,GBC的延长线上一点,且∠B=∠DCG=∠D,则下列结论不一定成立的是(  )

A.∠AEF=∠EFC B.∠A=∠BCF

C.∠AEF=∠EBC D.∠BEF+∠EFC180°

10.一次数学活动中,检验两条完全相同的纸带①、②的边线是否平行,小明和小丽采用两种不同的方法:小明把纸带①沿AB折叠,量得∠1=∠250°;小丽把纸带②沿GH折叠,发现GDGC重合,HFHE重合.则下列判断正确的是(  )

A.纸带①的边线平行,纸带②的边线不平行

B.纸带①的边线不平行,纸带②的边线平行

C.纸带①、②的边线都平行

D.纸带①、②的边线都不平行

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 10题图

二、填空题(每小题3分,共24)

11.如图,∠1和∠2________角,∠2和∠3________角.

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 11题图


12.如图是李晓松同学在运动会跳远比赛中最好的一跳,甲、乙、丙三名同学分别测得PA5.52米,PB5.37米,MA5.60米,那么他的跳远成绩应该为________米.

   <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>12题图   <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>13题图

13.如图,直线ABCD交于点OOEABOD平分∠BOE,则∠AOC________°.

14.如图,条件:____________可使ACDF;条件:____________可使ABDE(每空只填一个条件)

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 14题图 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>15题图

15.如图是超市里的购物车,扶手AB与车底CD平行,∠2比∠310°,∠1是∠2的倍,则∠2的度数是________

16.一个安全用电标识如图①所示,此标识可以抽象为图②中的几何图形,其中ABCDEDBF,点EF在线段AC上.若∠A=∠C17°,∠B=∠D50°,则∠AED的度数为________

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 16题图    <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  第17题图

17.如图,ABCDOE平分∠BOCOFOEOPCD,∠ABOa°.有下列结论:①∠BOE(180a;②OF平分∠BOD;③∠POE=∠BOF;④∠POB2∠DOF.其中正确的结论是________(填序号)

18.已知OAOC,∠AOB∶∠AOC2∶3,则∠BOC的度数为________

三、解答题(66)

19(7)已知一个角的余角比它的补角的还小55°,求这个角的度数.







20(7)用直尺和圆规作图:已知∠1,∠2,求作一个角,使它等于∠12∠2.

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

20题图





21.(8)如图,DGBCACBCFEAB,∠1=∠2,试说明:CDAB.

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

21题图

解:∵DGBCACBC(已知)

∴∠DGB=∠ACB90°(垂直定义)

DGAC(__________________________)

∴∠2=∠________(____________________)

∵∠1=∠2(已知)

∴∠1=∠________(等量代换)

EFCD(________________________)

∴∠AEF=∠________(__________________________)

EFAB(已知)

∴∠AEF90°(________________)

∴∠ADC90°(________________)

CDAB(________________)


22(8)如图,直线ABCD相交于点OOE平分∠BODOF平分∠COB,∠AOD∶∠DOE4∶1,求∠AOF的度数.

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>


22题图




23(10)如图,已知直线l1l2AB分别是l1l2上的点,l3l1l2分别交于点CDP是线段CD上的动点(P不与CD重合)

(1)若∠1150°,∠245°,求∠3的度数;

(2)若∠1α,∠2β,用αβ表示∠APC+∠BPD.

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

23题图


24(12)如图,已知BE平分∠ABDDE平分∠BDC,且∠EBD+∠EDB90°.

(1)试说明:ABCD

(2)HBE延长线与直线CD的交点,BI平分∠HBD,写出∠EBI与∠BHD的数量关系,并说明理由.

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>


24题图




25(14)如图,已知ABCDADBC,∠DCE90°,点E在线段AB上,∠FCG90°,点F在直线AD上,∠AHG90°.

(1)找出图中与∠D相等的角,并说明理由;

(2)若∠ECF25°,求∠BCD的度数;

(3)(2)的条件下,点C(C不与BH两点重合)从点B出发,沿射线BG的方向运动,其他条件不变,求∠BAF的度数.

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

25题图




参考答案与解析

1C 2.A 3.B 4.B 5.C 6.A 7.C 8.C 9.C

10B 解析:如图①,∵∠1=∠250°,∴∠3=∠150°,∠4180°-∠2130°.由折叠可知∠4=∠2+∠5,∴∠5=∠4-∠280°.∵∠3≠∠5,∴纸带①的边线不平行.如图②,∵GDGC重合,HFHE重合,∴∠CGH=∠DGH90°,∠EHG=∠FHG90°,∴∠CGH+∠EHG180°,∴纸带②的边线平行.故选B.

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

11.同位 同旁内 12.5.37 13.45

14.∠ACB=∠EFD ∠B=∠E

1555° 16.67° 17.①②③

1830°150° 解析:∵OAOC,∴∠AOC90°.∵∠AOB∶∠AOC2∶3,∴∠AOB60°.如图,∠AOB的位置有两种情况:一种是在∠AOC内,一种是在∠AOC外.(1)当在∠AOC内时,∠BOC90°60°30°(2)当在∠AOC外时,∠BOC90°60°150°.综上可知,∠BOC的度数为30°150°.

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

19.解:设这个角的度数为x,依题意有(180°x)55°90°x(4)解得x75°.故这个角的度数为75°.(7)

20.解:略.(7)

21.解:同位角相等,两直线平行 ACD 两直线平行,内错角相等 ACD 同位角相等,两直线平行(4) ADC 两直线平行,同位角相等 垂直的定义 等量代换 垂直的定义(8)

22.解:∵OE平分∠BOD,∴∠DOE=∠EOB.(2)又∵∠AOD∶∠DOE4∶1,∠AOD+∠DOE+∠EOB180°,∴∠DOE=∠EOB30°,∠AOD120°,∴∠COB=∠AOD120°.(5)∵OF平分∠COB,∴∠BOF=∠COB60°,∴∠AOF180°-∠BOF180°60°120°.(8)

23.解:(1)过点P向右作PEl1.∵l1l2,∴l1PEl2,∴∠1+∠APE180°,∠2=∠BPE.(2)∵∠1150°,∠245°,∴∠APE180°-∠1180°150°30°,∠BPE=∠245°,∴∠3=∠APE+∠BPE30°45°75°.(6)

(2)(1)知∠1+∠APE180°,∠2=∠BPE.∵∠1α,∠2β,∴∠APB=∠APE+∠BPE180°-∠1+∠2180°αβ(8)∴∠APC+∠BPD180°-∠APB180°(180°αβ)αβ.(10)

24.解:(1)∵BE平分∠ABDDE平分∠BDC,∴∠ABD2∠EBD,∠BDC2∠EDB.(3)∵∠EBD+∠EDB90°,∴∠ABD+∠BDC2(∠EBD+∠EDB)180°,∴ABCD.(6)

(2)∠EBI=∠BHD.(8)理由如下:∵ABCD,∴∠ABH=∠EHD.(10)∵BI平分∠EBD,∴∠EBI=∠EBD=∠ABH=∠BHD.(12)

25.解:(1)与∠D相等的角为∠DCG,∠ECF,∠B.(1)理由如下:∵ADBC,∴∠D=∠DCG.∵∠FCG90°,∠DCE90°,∴∠ECF=∠DCG=∠D.∵ABDC,∴∠B=∠DCG=∠D,∴与∠D相等的角为∠DCG,∠ECF,∠B.(4)

(2)∵∠ECF25°,∠DCE90°,∴∠FCD65°.又∵∠BCF90°,∴∠BCD65°90°155°.(7)

(3)分两种情况进行讨论:①如图a,当点C在线段BH上时,点FDA的延长线上,此时∠ECF=∠DCG=∠B25°.∵ADBC,∴∠BAF=∠B25°(10)②如图b,当点CBH的延长线上时,点F在线段AD上.∵∠B25°ADBC,∴∠BAF180°25°155°.综上所述,∠BAF的度数为25°155°.(14)

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>