当前位置:首页 > 七年级 > 数学试卷

【333121】5.3 第3课时 角平分线的性质2

时间:2025-02-08 16:38:37 作者: 字数:3524字
简介:

1. 用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=BOC的依据是(  )

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/904/" title="平分" class="c1" target="_blank">平分</a>

A. SSS

B. ASA

C. AAS

D. 角平分线上的点到角两边的距离相等

2. 作∠AOB的平分线时,O为圆心,某一长度为半径作弧,OA,OB分别相交于点C,D,然后分别以点C,D为圆心,适当的长度为半径作弧,使两弧相交于一点,则这个适当的长度为(  )

A. 大于 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/904/" title="平分" class="c1" target="_blank">平分</a> CD B. 等于 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/904/" title="平分" class="c1" target="_blank">平分</a> CD

C. 小于 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/904/" title="平分" class="c1" target="_blank">平分</a> CD D. 以上答案都不对

3. 根据图中尺规作图的痕迹,先判断得出结论:__________,并说明理由

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/904/" title="平分" class="c1" target="_blank">平分</a>

4. 如图,OC是∠AOB的平分线,POC上一点,PDOA于点D,PD=6,则点P到边OB的距离为(  )

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/904/" title="平分" class="c1" target="_blank">平分</a>

A. 6 B. 5 C. 4 D. 3

5. 如图,OP为∠AOB的平分线,PCOA,PDOB,垂足分别是点C,D,则下列结论错误的是(  )

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/904/" title="平分" class="c1" target="_blank">平分</a>

A. PC=PD B. CPD=DOP

C. CPO=DPO D. OC=OD

6. 如图,OP平分∠AOB,PAOA,PBOB,垂足分别为点A,B.下列结论中不一定成立的是(  )

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/904/" title="平分" class="c1" target="_blank">平分</a>

A. PA=PB B. PO平分∠APB

C. OA=OB D. AB垂直平分OP

7. 如图,ABCD,BPCP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.AD=8,则点PBC的距离是(  )

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/904/" title="平分" class="c1" target="_blank">平分</a>

A. 8 B. 6 C. 4 D. 2

8. 如图,ABC,CDAB边上的高,BE平分∠ABC,CD于点E,BC=50,DE=14,BCE的面积等于____.

9. 如图,ABC,BD平分∠ABC,AC于点D,BC边上有一点E,连接DE,ADDE的关系为(  )

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/904/" title="平分" class="c1" target="_blank">平分</a>

A. AD>DE B. AD=DE

C. AD<DE D. 不确定

提升训练

10. 如图,一块余料ABCD,ADBC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H,再分别以点G,H为圆心,大于 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/904/" title="平分" class="c1" target="_blank">平分</a> GH的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,AD于点E.

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/904/" title="平分" class="c1" target="_blank">平分</a>

(1)试说明:AB=AE;

(2)若∠A=100°,求∠EBC的度数.










11. 如图,BD为∠ABC的平分线,AB=BC,PBD,PMAD于点M,PNCD于点N.

试说明:PM=PN.

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/904/" title="平分" class="c1" target="_blank">平分</a>








12. 如图,在四边形ABCD,AC为∠BAD的平分线,AB=AD,E,F分别在AB,AD,AE=DF,请说明为何四边形AECF的面积为四边形ABCD的一半.

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/904/" title="平分" class="c1" target="_blank">平分</a>







13. 如图,1=2,PBN上一点,PDBC于点D,AB+BC=2BD.试说明:BAP+BCP=180°.

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/904/" title="平分" class="c1" target="_blank">平分</a>









答案:

1. A

2. A

3. OM平分∠BOA

4. A

5. B

6. D

7. C

8. 350

9. D

10.解:(1ADBC∴∠AEB=EBC BEABC的角平分线,∴∠EBC=ABE∴∠AEB=ABEAB=AE

2∵∠A=100°ABE=AEB∴∠ABE=AEB=40°ADBC∴∠EBC=AEB=40°

11. 证明:因为BD为∠ABC的平分线,

所以∠ABD=CBD.

又因为BA=BC,BD=BD,

所以ABD≌△CBD(SAS).

所以∠ADB=CDB.

因为点PBD,PMAD,PNCD,

所以PM=PN.

12. 证明:如图,CGABG,CHADH,

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/904/" title="平分" class="c1" target="_blank">平分</a>

因为AC为∠BAD的平分线,

所以CG=CH.

因为AB=AD,

所以SABC=SACD.

又因为AE=DF,

所以SAEC=SCDF.

因为SBCE=SABC-SAEC,SACF=SACD-SCDF,

所以SBCE=SACF.

因为S四边形AECF=SAEC+SACF,

所以S四边形AECF=SAEC+SBCE.

所以S四边形AECF=SABC.

所以四边形AECF的面积为四边形ABCD的一半.

13.证明:如图,过点PPEBAE.

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/904/" title="平分" class="c1" target="_blank">平分</a>

PDBCPEBM1=2

PD=PE.

PDBCPEBMPD=PEBP=BP

∴△BPD≌△BPE.

BE=BD.

AB+BC=2BDBC=BD+DCAB=BE-AE

AE=CD.

PD=PEAE=CDPDBCPEBM

∴△PCD≌△PAE

∴∠PCB=PAE.

∵∠BAP+PAE=180°

∴∠BAP+PCB=180°.