【333117】5.3 第1课时 等腰三角形的性质1
1.
如图,已知DE∥BC,AB=
AC,∠BDE=125°,则∠C
的度数是( )[来源:学科网ZXXK][来源:学科网ZXXK]
A.55°
B. 45°
C. 35° D. 65°
2.已知一个等腰三角形的两边长是3cm和7cm,则它的周长为( )
A. 13cm
B. 17cm
C. 13或17cm
D. 10cm
3.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( )
A. 60° B. 120° C. 60°或150° D. 60°或120°
4.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是( )
A. 4个 B. 5个 C. 8个 D. 9个
5.等腰三角形一边长为8,另一边长为5,则此三角形的周长为________.
6.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为______ .
7
.
如图,在等
腰三角形ABC中,AD、B
E分别是底边BC和腰AC上的高线,DA、BE的延长线交于点P.若∠BAC=110°,求∠P的度
数.
[来源:学科网ZXXK]
8.如图,已知:梯形ABCD中,AD∥BC,AB=DC,求证:∠B=∠C.
9.如图,点D、E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.
10.(1)如图1,Rt△ABC中,∠ACB=90°,点D、E在边AB上,且AD=AC,BE=BC,求∠DCE的度数;
(2)如图2,在△ABC中,∠ACB=40°,点D、E在直线AB上,且AD=AC,BE=BC,则∠DCE的度数;
(3)在△ABC中,∠ACB=n°(0<n<180°),点D、E在直线AB上,且AD=AC,BE=BC,求∠DCE的度数(直接写出答案,用含n的式子表示).
参考答案
1. A
7. 解:∵△ABC是等腰三角形,AB=AC,AD⊥BC,∠BAC=110°,
∴∠DAB=∠DAC=55°,
∵∠DAC=
∠EAP(对顶角相等),
∴∠EAP=∠DAC=55°,
又∵BE是腰AC上的高,
∴∠P=90°-∠EAP=90°-55°=35°.
故∠P的度数是35°.
[来源:学.科.网Z.X.X.K]
- 1【354787】初一期末试卷一
- 2【354786】初一期末试卷五
- 3【354785】初一期末试卷四
- 4【354784】初一期末试卷三
- 5【354783】初一期末试卷二
- 6【350123】第6章 知识点梳理
- 7【350122】第5章 知识点梳理
- 8【350121】第4章 知识点梳理
- 9【350120】第3章 知识点梳理
- 10【350119】第2章 知识点梳理
- 11【350118】第1章 知识点梳理
- 12【350117】6.2 方差
- 13【350116】6.1.3 众数
- 14【350115】6.1.2 中位数
- 15【350114】6.1.1 第2课时 加权平均数
- 16【350112】5.3 图形变换的简单应用
- 17【350113】6.1.1 第1课时 平均数
- 18【350111】5.2 旋转
- 19【350110】5.1.2 轴对称变换
- 20【350109】5.1.1 轴对称图形
- 【350108】4.6 两条平行线间的距离
- 【350107】4.5 第2课时 垂线段与点到直线的距离
- 【350106】4.5 第1课时 垂线
- 【350105】4.4 第2课时 平行线的判定方法2,3
- 【350104】4.4 第1课时 平行线的判定方法1
- 【350103】4.3 平行线的性质
- 【350102】4.2 平移
- 【350101】4.1.2 相交直线所成的角
- 【350100】4.1.1 相交与平行
- 【350099】3.3 第2课时 利用完全平方公式进行因式分解
- 【350098】3.3 第1课时 利用平方差公式进行因式分解
- 【350097】3.2 第2课时 提多项式公因式
- 【350096】3.2 第1课时 提单项式公因式
- 【350095】3.1 多项式的因式分解
- 【350094】2.2.3 运用乘法公式进行计算
- 【350093】2.2.2 第2课时 运用完全平方公式进行计算
- 【350092】2.2.2 第1课时 完全平方公式
- 【350091】2.2.1 平方差公式
- 【350090】2.1.4 第2课时 多项式与多项式相乘
- 【350089】2.1.4 第1课时 单项式与多项式相乘