当前位置:首页 > 七年级 > 数学试卷

【332807】2.3 第2课时 平行线性质与判定的综合运用1

时间:2025-02-07 08:58:43 作者: 字数:4625字
简介:

1. 如图直线ab与直线cd相交12370°4的度数是(  )

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/132/" title="运用" class="c1" target="_blank">运用</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a>

A35° B70° C90° D110°

2. 如图AD如果B20°那么C(  )

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/132/" title="运用" class="c1" target="_blank">运用</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a>

A40° B20° C60° D70°

3. 如图已知185°295°4125°3的度数为(  )

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/132/" title="运用" class="c1" target="_blank">运用</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a>

A95° B85° C70 ° D55°

4. 如图,1=∠2B=∠D,下列四个选项中,错误的是( )

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/132/" title="运用" class="c1" target="_blank">运用</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a>

  1. DCA=∠DAC BADBC CABCD D.∠DAC=∠BCA

5.如图,已知∠1=∠2,∠BAD=∠BCD,则下列结论⑴AB∥CD,⑵AD∥BC,⑶∠B=∠D,⑷∠D=∠ACB,正确的有(  
 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/132/" title="运用" class="c1" target="_blank">运用</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a>

A. 1个                                     B. 2个                              C. 3个                                 D. 4个

6.如图,CF是△ABC的外角∠ACM的平分线,且CF∥AB,∠ACF=50°,则∠B的度数为(    <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/132/" title="运用" class="c1" target="_blank">运用</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a>

A. 80°                                       B. 40°                                       C. 60°                                   D. 50°

7.完成下面的证明过程:
已知:如图,∠D=123°,∠EFD=57°,∠1=∠2
求证:∠3=∠B
证明:∵∠D=123°,∠EFD=57°(已知)
∴∠D+∠EFD=180°
∴AD∥________________
又∵∠1=∠2(已知)
∴________∥BC(内错角相等,两直线平行)
∴EF∥________________
∴∠3=∠B(两直线平行,同位角相等)
 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/132/" title="运用" class="c1" target="_blank">运用</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a>

8.如图,在△ABC中,CD⊥AB,垂足为D,点EBC上,EF⊥AB,垂足为F.∠1=∠2,试判断DGBC的位置关系,并说明理由.

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/132/" title="运用" class="c1" target="_blank">运用</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a>

9.如图所示,已知∠1=∠2,∠3=∠4,∠5=∠C,求证:DE//BF
 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/132/" title="运用" class="c1" target="_blank">运用</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a>

10.如图,AB∥CDAE平分∠BADCDAE相交于F,∠CFE=∠E.请你判断ADBE的位置关系,并说明理由.

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/132/" title="运用" class="c1" target="_blank">运用</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a>





11.如图,已知AD⊥EFCE⊥EF,∠2+∠3=180°

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/132/" title="运用" class="c1" target="_blank">运用</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a>

1)请你判断∠1与∠BDC的数量关系,并说明理由;

2)若∠1=70°DA平分∠BDC,试求∠FAB的度数.











12. 如图,已知∠ADE=∠B,∠1=∠2,那么CDFG平行吗?试说明理由.

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/132/" title="运用" class="c1" target="_blank">运用</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a>






答案:

1.D 2.B 3.D 4.A 5.C 6.D

7.EF;同旁内角互补,两直线平行;ADBC;平行于同一条直线的两直线平行

8.解:DG∥BC,理由如下: CD⊥ABEF⊥AB
∴CD∥EF
∴∠2=∠DCE
∵∠1=∠2
∴∠1=∠DCE
∴DG∥BC

9.证明:∵∠3=∠4.
∴BD∥CF.
∴∠C+∠CDB=180°.
又∵∠5=∠C.
∴∠CDB+∠5=180°.
∴AB∥CD.
∴∠2=∠BGD.
又∵∠1=∠2.
∴∠BGD=∠1.
∴DE∥BF.

10.证明:∵AE平分∠BAD ∴∠1=∠2
∵AB∥CD,∠CFE=∠E
∴∠1=∠CFE=∠E
∴∠2=∠E
∴AD∥BE
 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/132/" title="运用" class="c1" target="_blank">运用</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a>

11.1)猜想:∠1=∠BDC 证明:∵AD⊥EFCE⊥EF
∴∠GAD=∠GEC=90°
∴AD∥CE
∴∠ADC+∠3=180°
又∵∠2+∠3=180°
∴∠2=∠ADC
∴AB∥CD
∴∠1=∠BDC
2)解:解:∵AD⊥EF ∴∠FAD=90°
∵AB∥CD
∴∠BDC=∠1=70°
∵DA平分∠BDC
∴∠ADC=  <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/132/" title="运用" class="c1" target="_blank">运用</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> ∠BDC=  <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/132/" title="运用" class="c1" target="_blank">运用</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> ×70°=35°
∵AB∥CD
∴∠2=∠ADC=35°
∴∠FAB=∠FAD﹣∠2=90°﹣35°=55°

12.解:平行.理由:因为∠ADE=∠B,所以DEBC,所以∠1=∠BCD,又因为∠1=∠2,所以∠BCD=∠2,所以CDFG(同位角相等,两直线平行)