【332671】1.4 第3课时 多项式与多项式相乘1
1.列各式中计算结果是x2-6x+5的是( )
A.(x-2)(x-3)
B.(x-6)(x+1)
C.(x-1)(x-5)
D.(x+6)(x-1)
2.(x2+y5)·(y2+z)等于( )
A.x2y2+x2z +y7+y5z B.2x2y2+x2z +y5z C.x2y2+x2z +y5z D.x2y2+y7+y5z
3.下列各式计算正确的是( )
A.2x(3x-2)=5x2-4x
B.(2y+3x)(3x-2y)=9x2-4y2
C.(x+2)2=x2+2x+4
D.(x+2)(2x-1)=2x2+5x-2
4.要使多项式(x2+px+2)(x-q)展开后不含x的一次项,则p与q的关系是( )
A.p=q B.p+q=0 C.pq=1 D.pq=2
5.若(y+3)(y-2)=y2+my+n,则m、n的值分别为( )
A.m=5,n=6
B.m=1,n=-6
C.m=1,n=6
D.m=5,n=-6
6.计算:(x-3)(x+4)=_____.
7.若x2+px+6=(x+q)(x-3),则pq=_____.
8.先观察下列各式,再解答后面问题:(x+5)(x+6)=x2+11x+30;(x-5)(x-6)=x2-11x+30;(x-5)(x+6)=x2+x-30;
(1)乘积式中的一次项系数、常数项与两因式中的常数项有何关系?
(2)根据以上各式呈现的规律,用公式表示出来;
(3)试用你写的公式,直接写出下列两式的结果;
①(a+99)(a-100)=_____;②(y-500)(y-81)=_____.
9.(x-y)(x2+xy+y2)=_____;(x-y)(x3+x2y+xy2+y3)=_____
根据以上等式进行猜想,当n是偶数时,可得:(x-y)(xn+xn-1y+yn-2y2+…+x2yn-2+xyn-1+yn)=_____.
10.三角形一边长2a+2b,这条边上的高为2b-3a,则这个三角形的面积是_____.
11.若(x+4)(x-3)=x2+mx-n,则m=_____,n=_____.
12.整式的乘法运算(x+4)(x+m),m为何值时,乘积中不含x项?m为何值时,乘积中x项的系数为6?你能提出哪些问题?并求出你提出问题的结论.
13.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片()张.
计算:
(1)(5mn2-4m2n)(-2mn)
(2)(x+7)(x-6)-(x-2)(x+1)
15.试说明代数式(2x+1)(1-2x+4x2)-x(3x-1)(3x+1)+(x2+x+1)(x-1)-(x-3)的值与x无关.
参考答案
1.答案:C
2.答案:A
3.答案:B
4.答案:D
5.答案:B
6.答案:x2+x-12
7.答案:10
8.答案:①a2-a-9900;②y2-581y+40500.
9.答案:x3-y3;x4-y4;xn+1-yn+1.
10.答案:-3a2+2b2-ab.
11.答案:1,12.
12.解:∵(x+4)(x+m)=x2+mx+4x+4m
若要使乘积中不含x项,则
∴4+m=0
∴m=-4
若要使乘积中x项的系数为6,则
∴4+m=6
∴m=2
提出问题为:m为何值时,乘积中不含常数项?
若要使乘积中不含常数项,则
∴4m=0
∴m=0
13.解:(a+2b)(a+b)=a2+3ab+2b2.
则需要C类卡片3张.
14.解:(1)原式=-10m2n3+8m3n2;
(2)原式=x2-6x+7x-42-x2-x+2x+2=2x-40.
15.解:原式=2x-4x2+8x3+1-2x+4x2-9x3-x+x3-1+x-3=-3,则代数式的值与x无关.
- 1【354787】初一期末试卷一
- 2【354786】初一期末试卷五
- 3【354785】初一期末试卷四
- 4【354784】初一期末试卷三
- 5【354783】初一期末试卷二
- 6【350123】第6章 知识点梳理
- 7【350122】第5章 知识点梳理
- 8【350121】第4章 知识点梳理
- 9【350120】第3章 知识点梳理
- 10【350119】第2章 知识点梳理
- 11【350118】第1章 知识点梳理
- 12【350117】6.2 方差
- 13【350116】6.1.3 众数
- 14【350115】6.1.2 中位数
- 15【350114】6.1.1 第2课时 加权平均数
- 16【350112】5.3 图形变换的简单应用
- 17【350113】6.1.1 第1课时 平均数
- 18【350111】5.2 旋转
- 19【350110】5.1.2 轴对称变换
- 20【350109】5.1.1 轴对称图形
- 【350108】4.6 两条平行线间的距离
- 【350107】4.5 第2课时 垂线段与点到直线的距离
- 【350106】4.5 第1课时 垂线
- 【350105】4.4 第2课时 平行线的判定方法2,3
- 【350104】4.4 第1课时 平行线的判定方法1
- 【350103】4.3 平行线的性质
- 【350102】4.2 平移
- 【350101】4.1.2 相交直线所成的角
- 【350100】4.1.1 相交与平行
- 【350099】3.3 第2课时 利用完全平方公式进行因式分解
- 【350098】3.3 第1课时 利用平方差公式进行因式分解
- 【350097】3.2 第2课时 提多项式公因式
- 【350096】3.2 第1课时 提单项式公因式
- 【350095】3.1 多项式的因式分解
- 【350094】2.2.3 运用乘法公式进行计算
- 【350093】2.2.2 第2课时 运用完全平方公式进行计算
- 【350092】2.2.2 第1课时 完全平方公式
- 【350091】2.2.1 平方差公式
- 【350090】2.1.4 第2课时 多项式与多项式相乘
- 【350089】2.1.4 第1课时 单项式与多项式相乘