【331613】北师大版九年级(下)第三章 单元测试卷1
单元测试(一)
一.选择题
1.如图,四边形ABCD内接⊙O,AC平分∠BAD,则下列结论正确的是( )
A.AB=AD B.BC=CD C.
D.∠BCA=∠DCA
2.如图,CD为⊙O的直径,弦AB⊥CD,垂足为M,若AB=12,OM:MD=5:8,则⊙O的周长为( )
A.26π
B.13π
C.
D.
3.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为( )
A.
B.2
C.2
D.8
4.如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于( )
A.180°﹣2α B.2α C.90°+α D.90°﹣α
5.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为( )
A.50° B.60° C.80° D.90°
6.在平面直角坐标系中,点O为坐标原点,点A、B、C的坐标分别为A(
,0)、B(3
,0)、C(0,5),点D在第一象限内,且∠ADB=60°,则线段CD的长的最小值是( )
A.2
﹣2
B.2
C.2
D.2
7.下列说法中,正确的是( )
A.三点确定一个圆 B.三角形有且只有一个外接圆
C.四边形都有一个外接圆 D.圆有且只有一个内接三角形
8.如图,在平面直角坐标系中,点A,B,C的坐标为(1,4),(5,4),(1,﹣2),则△ABC外接圆的圆心坐标是( )
A.(2,3) B.(3,2) C.(1,3) D.(3,1)
9.在平面直角坐标系xOy中,经过点(sin45°,cos30°)的直线,与以原点为圆心,2为半径的圆的位置关系是( )
A.相交 B.相切
C.相离 D.以上三者都有可能
10.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于( )
A.5
B.6
C.2
D.3
11.如图,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=5,则△PCD的周长为( )
A.5 B.7 C.8 D.10
12.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为( )
A.
B.2
C.
D.1
二、填空题
13.如图,CD是⊙O的直径,弦AB⊥CD于点H,若∠D=30°,CH=1cm,则AB=
cm.
14.在△AOB中,AB=OB=2,△COD中,CD=OC=3,∠ABO=∠DCO.连接AD、BC,点M、N、P分别为OA、OD、BC的中点.
①若A、O、C三点在同一直线上,且∠ABO=2α,则
=
(用含有α的式子表示);
②固定△AOB,将△COD绕点O旋转,PM最大值为 .
15.如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线l的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4,由此可知:
(1)当d=3时,m= ;
(2)当m=2时,d的取值范围是 .
16.)如图,⊙O的半径为6cm,B为⊙O外一点,OB交⊙O于点A,AB=OA,动点P从点A出发,以π cm/s的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为 时,BP与⊙O相切.
17.芸豆17(2017•岳阳)我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值,设半径为r的圆内接正n边形的周长为L,圆的直径为d,如图所示,当n=6时,π≈
=
=3,那么当n=12时,π≈
=
.(结果精确到0.01,参考数据:sin15°=cos75°≈0.259)
三、解答题
18.如图,在Rt△AOB中,∠B=40°,以OA为半径,O为圆心作⊙O,交AB于点C,交OB于点D.求
的度数.
19.如图,一面墙上有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接矩形,已知矩形的高AC=2米,宽CD=
米.
(1)求此圆形门洞的半径;
(2)求要打掉墙体的面积.
20.如图,有两条公路OM,ON相交成30°,沿公路OM方向离两条公路的交叉处O点80米的A处有一所希望小学,当拖拉机沿ON方向行驶时,路两旁50米内会受到噪音影响,已知有两台相距30米的拖拉机正沿ON方向行驶,它们的速度均为5米/秒,问这两台拖拉机沿ON方向行驶时给小学带来噪音影响的时间是多少?
21.如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.
(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;
(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.
22.如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:
(1)∠BOC的度数;
(2)BE+CG的长;
(3)⊙O的半径.
23.如图,在⊙O中,弦AB=弦CD,AB⊥CD于点E,且AE<EB,CE<ED,连结AO,DO,BD.
(1)求证:EB=ED.
(2)若AO=6,求
的长.
24.中国扇文化有着深厚的文化底蕴,是民族文化的一个组成部分,它与竹文化、佛教文化有着密切关系.历来中国被誉为制扇王国.扇子主要材料是:竹、木、纸、象牙、玳瑁、翡翠、飞禽翎毛、其它棕榈叶、槟榔叶、麦杆、蒲草等也能编制成各种千姿百态的日用工艺扇,造型优美,构造精制,经能工巧匠精心镂、雕、烫、钻或名人挥毫题诗作画,使扇子艺术身价倍增.折扇,古称“聚头扇“,或称为撒扇,或折叠扇,以其收拢时能够二头合并归一而得名.如图,折扇的骨柄OA的长为5a,扇面的宽CA的长为3a,折扇张开的角度为n°,求出扇面的面积(用代数式表示).
答案与解析
1.如图,四边形ABCD内接⊙O,AC平分∠BAD,则下列结论正确的是( )
A.AB=AD B.BC=CD C.
D.∠BCA=∠DCA
【考点】M4:圆心角、弧、弦的关系.
【专题】选择题
【分析】根据圆心角、弧、弦的关系对各选项进行逐一判断即可.
【解答】解:A、∵∠ACB与∠ACD的大小关系不确定,∴AB与AD不一定相等,故本选项错误;
B、∵AC平分∠BAD,∴∠BAC=∠DAC,∴BC=CD,故本选项正确;
C、∵∠ACB与∠ACD的大小关系不确定,∴
与
不一定相等,故本选项错误;
D、∠BCA与∠DCA的大小关系不确定,故本选项错误.
故选B.
【点评】本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
2.如图,CD为⊙O的直径,弦AB⊥CD,垂足为M,若AB=12,OM:MD=5:8,则⊙O的周长为( )
A.26π B.13π C.
D.
【考点】M2:垂径定理.
【专题】选择题
【分析】连接OA,根据垂径定理得到AM=
AB=6,设OM=5x,DM=8x,得到OA=OD=13x,根据勾股定理得到OA=
×13,于是得到结论.
【解答】解:连接OA,
∵CD为⊙O的直径,弦AB⊥CD,
∴AM=
AB=6,
∵OM:MD=5:8,
∴设OM=5x,DM=8x,
∴OA=OD=13x,
∴AM=12x=6,
∴x=
,
∴OA=
×13,
∴⊙O的周长=2OA•π=13π,
故选B.
【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.
3.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为( )
A.
B.2
C.2
D.8
【考点】M2:垂径定理;KO:含30度角的直角三角形;KQ:勾股定理.
【专题】选择题
【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=
OP=1,然后在Rt△OHC中利用勾股定理计算出CH=
,所以CD=2CH=2
.
【解答】解:作OH⊥CD于H,连结OC,如图,
∵OH⊥CD,
∴HC=HD,
∵AP=2,BP=6,
∴AB=8,
∴OA=4,
∴OP=OA﹣AP=2,
在Rt△OPH中,∵∠OPH=30°,
∴∠POH=30°,
∴OH=
OP=1,
在Rt△OHC中,∵OC=4,OH=1,
∴CH=
=
,
∴CD=2CH=2
.
故选C.
【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.
4.如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于( )
A.180°﹣2α B.2α C.90°+α D.90°﹣α
【考点】M5:圆周角定理.
【专题】选择题
【分析】首先连接OC,由圆周角定理,可求得∠BOC的度数,又由等腰三角形的性质,即可求得∠OBC的度数.
【解答】解:∵连接OC,
∵△ABC内接于⊙O,∠A=α,
∴∠BOC=2∠A=2α,
∵OB=OC,
∴∠OBC=∠OCB=
=90°﹣α.
故选D.
【点评】此题考查了圆周角定理与等腰三角形的性质.此题比较简单,注意掌握辅助线的作法,注意数形结合思想的应用.
5.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为( )
A.50° B.60° C.80° D.90°
【考点】M6:圆内接四边形的性质.
【专题】选择题
【分析】根据四点共圆的性质得:∠GBC=∠ADC=50°,由垂径定理得:
,则∠DBC=2∠EAD=80°.
【解答】解:如图,∵A、B、D、C四点共圆,
∴∠GBC=∠ADC=50°,
∵AE⊥CD,
∴∠AED=90°,
∴∠EAD=90°﹣50°=40°,
延长AE交⊙O于点M,
∵AO⊥CD,
∴
,
∴∠DBC=2∠EAD=80°.
故选C.
【点评】本题考查了四点共圆的性质:圆内接四边形的任意一个外角等于它的内对角,还考查了垂径定理的应用,属于基础题.
6.在平面直角坐标系中,点O为坐标原点,点A、B、C的坐标分别为A(
,0)、B(3
,0)、C(0,5),点D在第一象限内,且∠ADB=60°,则线段CD的长的最小值是( )
A.2
﹣2 B.2
C.2
D.2
【考点】M8:点与圆的位置关系;D5:坐标与图形性质;M5:圆周角定理.
【专题】选择题
【分析】作圆,求出半径和PC的长度,判出点D只有在CP上时CD最短,CD=CP﹣DP求解.
【解答】解:作圆,使∠ADB=60°,设圆心为P,连结PA、PB、PC,PE⊥AB于E,如图所示:
∵A(
,0)、B(3
,0),
∴E(2
,0)
又∠ADB=60°,
∴∠APB=120°,
∴PE=1,PA=2PE=2,
∴P(2
,1),
∵C(0,5),
∴PC=
=2
,
又∵PD=PA=2,
∴只有点D在线段PC上时,CD最短(点D在别的位置时构成△CDP)
∴CD最小值为:2
﹣2.
故选:C.
【点评】本题主要考查坐标与图形的性质,圆周角定理及勾股定理,解决本题的关键是判出点D只有在CP上时CD最短.
7.下列说法中,正确的是( )
A.三点确定一个圆 B.三角形有且只有一个外接圆
C.四边形都有一个外接圆 D.圆有且只有一个内接三角形
【考点】M9:确定圆的条件.
【专题】选择题
【分析】根据确定圆的条件逐一判断后即可得到答案.
【解答】解:A、不在同一直线上的三点确定一个圆,故原命题错误;
B、三角形有且只有一个外切圆,原命题正确;
C、并不是所有的四边形都有一个外接圆,原命题错误;
D、圆有无数个内接三角形.
故选B.
【点评】本题考查了确定圆的条件,不在同一直线上的三点确定一个圆.
8.如图,在平面直角坐标系中,点A,B,C的坐标为(1,4),(5,4),(1,﹣2),则△ABC外接圆的圆心坐标是( )
A.(2,3) B.(3,2) C.(1,3) D.(3,1)
【考点】MA:三角形的外接圆与外心;D5:坐标与图形性质.
【专题】选择题
【分析】由已知点的坐标得出△ABC为直角三角形,∠BAC=90°,得出△ABC的外接圆的圆心是斜边BC的中点,即可得出结果.
【解答】解:如图所示:
∵点A,B,C的坐标为(1,4),(5,4),(1,﹣2),
∴△ABC为直角三角形,∠BAC=90°,
∴△ABC的外接圆的圆心是斜边BC的中点,
∴△ABC外接圆的圆心坐标是(
,
),
即(3,1).
故选:D.
【点评】本题考查了三角形的外接圆与外心、坐标与图形性质、直角三角形的外心特征;熟记直角三角形的外心特征,根据题意得出三角形是直角三角形是解决问题的关键.
9.在平面直角坐标系xOy中,经过点(sin45°,cos30°)的直线,与以原点为圆心,2为半径的圆的位置关系是( )
A.相交 B.相切
C.相离 D.以上三者都有可能
【考点】MB:直线与圆的位置关系;D5:坐标与图形性质;T5:特殊角的三角函数值.
【专题】选择题
【分析】设直线经过的点为A,若点A在圆内则直线和圆一定相交;若点在圆上或圆外则直线和圆有可能相交或相切或相离,所以先要计算OA的长和半径2比较大小再做选择.
【解答】解:设直线经过的点为A,
∵点A的坐标为(sin45°,cos30°),
∴OA=
=
,
∵圆的半径为2,
∴OA<2,
∴点A在圆内,
∴直线和圆一定相交,
故选A.
【点评】本题考查了直线和圆的位置关系,用到的知识点有特殊角的锐角三角函数值、勾股定理的运用,判定点A和圆的位置关系是解题关键.
10.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于( )
A.5 B.6 C.2
D.3
【考点】MC:切线的性质;L8:菱形的性质.
【专题】选择题
【分析】如图作DH⊥AB于H,连接BD,延长AO交BD于E.利用菱形的面积公式求出DH,再利用勾股定理求出AH,BD,由△AOF∽△DBH,可得
=
,即可解决问题.
【解答】解:如图作DH⊥AB于H,连接BD,延长AO交BD于E.
∵菱形ABCD的边AB=20,面积为320,
∴AB•DH=32O,
∴DH=16,
在Rt△ADH中,AH=
=12,
∴HB=AB﹣AH=8,
在Rt△BDH中,BD=
=8
,
设⊙O与AB相切于F,连接AF.
∵AD=AB,OA平分∠DAB,
∴AE⊥BD,
∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,
∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,
∴△AOF∽△DBH,
∴
=
,
∴
=
,
∴OF=2
.
故选C.
【点评】本题考查切线的性质、菱形的性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
11.如图,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=5,则△PCD的周长为( )
A.5 B.7 C.8 D.10
【考点】MG:切线长定理.
【专题】选择题
【分析】由切线长定理可得PA=PB,CA=CE,DE=DB,由于△PCD的周长=PC+CE+ED+PD,所以△PCD的周=PC+CA+BD+PD=PA+PB=2PA,故可求得三角形的周长.
【解答】解:∵PA、PB为圆的两条相交切线,
∴PA=PB,
同理可得:CA=CE,DE=DB.
∵△PCD的周长=PC+CE+ED+PD,
∴△PCD的周长=PC+CA+BD+PD=PA+PB=2PA,
∴△PCD的周长=10,
故选D.
【点评】本题考查了切线的性质以及切线长定理的运用.
12.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为( )
A.
B.2
C.
D.1
【考点】MO:扇形面积的计算.
【专题】选择题
【分析】首先证明△ABC是等边三角形.则△EDC是等边三角形,边长是2.而
和弦BE围成的部分的面积=
和弦DE围成的部分的面积.据此即可求解.
【解答】解:连接AE,OD、OE.
∵AB是直径,
∴∠AEB=90°,
又∵∠BED=120°,
∴∠AED=30°,
∴∠AOD=2∠AED=60°.
∵OA=OD
∴△AOD是等边三角形,
∴∠OAD=60°,
∵点E为BC的中点,∠AEB=90°,
∴AB=AC,
∴△ABC是等边三角形,边长是4.△EDC是等边三角形,边长是2.
∴∠BOE=∠EOD=60°,
∴
和弦BE围成的部分的面积=
和弦DE围成的部分的面积.
∴阴影部分的面积=S△EDC=
×22=
.
故选:A.
【点评】本题考查了等边三角形的面积的计算,证明△EDC是等边三角形,边长是4.理解
和弦BE围成的部分的面积=
和弦DE围成的部分的面积是关键.
13.如图,CD是⊙O的直径,弦AB⊥CD于点H,若∠D=30°,CH=1cm,则AB= 2
cm.
【考点】M2:垂径定理.
【专题】选择题
【分析】连接AC、BC.利用圆周角定理知∠D=∠B,然后根据已知条件“CD是⊙O的直径,弦AB⊥CD于点H”,利用垂径定理知BH=
AB;最后再由直角三角形CHB的正切函数求得BH的长度,从而求得AB的长度.
【解答】解:连接AC、BC.
∵∠D=∠B(同弧所对的圆周角相等),∠D=30°,
∴∠B=30°;
又∵CD是⊙O的直径,弦AB⊥CD于点H,
∴BH=
AB;
在Rt△CHB中,∠B=30°,CH=1cm,
∴BH=
,即BH=
;
∴AB=2
cm.
故答案是:2
.
【点评】本题考查了垂径定理和直角三角形的性质,解此类题目要注意将圆的问题转化成三角形的问题再进行计算.
14.在△AOB中,AB=OB=2,△COD中,CD=OC=3,∠ABO=∠DCO.连接AD、BC,点M、N、P分别为OA、OD、BC的中点.
①若A、O、C三点在同一直线上,且∠ABO=2α,则
= 2sinα (用含有α的式子表示);
②固定△AOB,将△COD绕点O旋转,PM最大值为
.
【考点】M9:确定圆的条件;KH:等腰三角形的性质;LL:梯形中位线定理;S9:相似三角形的判定与性质.
【专题】填空题
【分析】(1)连接BM、CN,则BM⊥OA,CN⊥OD,由四点共圆的判定知点B、C、M、N在以BC为直径的圆,且有MP=PN=BC÷2,而MN是△AOD的中位线,有MN等于AD的一半,故AD:BC=MN:PM,而可求得△PMN∽△BAO,有MN:PN=AO:AB=2sinα,从而求得AD:BC的值;
(2)当DC∥AB时,即四边形ABCO是梯形时,PM有最大值,由梯形的中位线的公式可求解.
【解答】解:(1)连接BM、CN,
由题意知BM⊥OA,CN⊥OD,∠AOB=∠COD=90°﹣α,
∵A、O、C三点在同一直线上,
∴B、O、D三点也在同一直线上,
∴∠BMC=∠CNB=90°,
∵P为BC中点,
∴在Rt△BMC中,PM=
BC,在Rt△BNC中,PN=
BC,
∴PM=PN,
∴B、C、N、M四点都在以点P为圆心,
BC为半径的圆上,
∴∠MPN=2∠MBN,
又∵∠MBN=
∠ABO=α,
∴∠MPN=∠ABO,
∴△PMN∽△BAO,
∴
,
由题意知MN=
AD,PM=
BC,
∴
,
∴
,
在Rt△BMA中,
=sinα,
∵AO=2AM,
∴
=2sinα,
∴
=2sinα;
(2)取BO中点G,连接PG,MG,则PG=
OC=
,GM=
AB=1,
所以当M,P,G共线的时候PM最大=1+1.5=2.5
【点评】本题利用了相似三角形的性质和等腰三角形的性质:三线合一、四点共圆的判定、正弦的概念、梯形的中位线的性质求解
15.如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线l的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4,由此可知:
(1)当d=3时,m= 1 ;
(2)当m=2时,d的取值范围是 1<d<3 .
【考点】MB:直线与圆的位置关系.
【专题】填空题
【分析】根据直线与圆的位置关系和直线与圆的交点个数以及命题中的数据分析即可得到答案.
【解答】解:(1)当d=3时,
∵3>2,即d>r,
∴直线与圆相离,则m=1,
故答案为:1;
(2)当d=3时,m=1;
当d=1时,m=3;
∴当1<d<3时,m=2,
故答案为:1<d<3.
【点评】本题考查了直线与圆的位置关系,解题的关键是了解直线与圆的位置关系与d与r的数量关系.
16.如图,⊙O的半径为6cm,B为⊙O外一点,OB交⊙O于点A,AB=OA,动点P从点A出发,以π cm/s的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为 2秒或10秒 时,BP与⊙O相切.
【考点】MD:切线的判定.
【专题】填空题
【分析】根据切线的判定与性质进行分析即可.若BP与⊙O相切,则∠OPB=90°,又因为OB=2OP,可得∠B=30°,则∠BOP=60°;根据弧长公式求得弧AP长,除以速度,即可求得时间.
【解答】解:连接OP
∵当OP⊥PB时,BP与⊙O相切,
∵AB=OA,OA=OP,
∴OB=2OP,∠OPB=90°;
∴∠B=30°;
∴∠O=60°;
∵OA=6cm,
弧AP=
=2π,
∵圆的周长为:12π,
∴点P运动的距离为2π或12π﹣2π=10π;
∴当t=2秒或10秒时,有BP与⊙O相切.
故答案为:2秒或5秒.
【点评】本题考查的是切线的性质及弧长公式,解答此题时要注意过圆外一点有两条直线与圆相切,不要漏解.
17.我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值,设半径为r的圆内接正n边形的周长为L,圆的直径为d,如图所示,当n=6时,π≈
=
=3,那么当n=12时,π≈
= 3.11 .(结果精确到0.01,参考数据:sin15°=cos75°≈0.259)
【考点】MM:正多边形和圆;T7:解直角三角形.
【专题】填空题
【分析】圆的内接正十二边形被半径分成顶角为30°的十二个等腰三角形,作辅助线构造直角三角形,根据中心角的度数以及半径的大小,求得L=24r•sin15°,d=2r,进而得到π≈
≈3.11.
【解答】解:如图,圆的内接正十二边形被半径分成12个如图所示的等腰三角形,其顶角为30°,即∠AOB=30°,
作OH⊥AB于点H,则∠AOH=15°,
∵AO=BO=r,
∵Rt△AOH中,sin∠AOH=
,即sin15°=
,
∴AH=r×sin15°,AB=2AH=2r×sin15°,
∴L=12×2r×sin15°=24r×sin15°,
又∵d=2r,
∴π≈
=
≈3.11,
故答案为:3.11
【点评】本题主要考查了正多边形和圆以及解直角三角形的运用,把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.
18.如图,在Rt△AOB中,∠B=40°,以OA为半径,O为圆心作⊙O,交AB于点C,交OB于点D.求
的度数.
【考点】M4:圆心角、弧、弦的关系.
【专题】解答题
【分析】连接OC,求出∠A度数,根据等腰三角形性质求出∠ACO,根据三角形外角性质求出即可.
【解答】解:连接OC,
∵∠O=90°,∠B=40°,
∴∠A=180°﹣90°﹣40°=50°,
∵OA=OC,
∴∠ACO=∠A=50°,
∴∠COD=∠ACO﹣∠B=10°,
∴
的度数是10°..
【点评】本题考查了圆心角、弧、弦之间的关系,等腰三角形性质,三角形内角和定理,三角形外角性质的应用,关键是求出∠COD的度数.
19.如图,一面墙上有一个矩形的门洞,现要将它改为一个圆弧形的门洞,圆弧所在的圆外接矩形,已知矩形的高AC=2米,宽CD=
米.
(1)求此圆形门洞的半径;
(2)求要打掉墙体的面积.
【考点】M3:垂径定理的应用;KQ:勾股定理.
【专题】解答题
【分析】(1)先证得BC是直径,在直角三角形BCD中,由BD与CD的长,利用勾股定理求出BC的长,即可求得半径;
(2)打掉墙体的面积=2(S扇形OAC﹣S△AOC)+S扇形OAB﹣S△AOB,根据扇形的面积和三角形的面积求出即可.
【解答】解:(1)连结AD、BC,
∵∠BDC=90°,
∴BC是直径,
∴BC=
=
∴圆形门洞的半径为
.
(2)取圆心O,连结OA.由上题可知,OA=OB=AB=
,
∴△AOB是正三角形,
∴∠AOB=60°,∠AOC=120°,
∴S△AOB=
,S△AOC=
∴S=2(S扇形OAC﹣S△AOC)+S扇形OAB﹣S△AOB
=2(
﹣
)+(
﹣
)
=
π﹣
∴打掉墙体面积为
π﹣
平方米.
【点评】本题考查了圆周角定理和垂径定理,扇形和三角形的面积,矩形的性质,关键是理解阴影部分的面积是由哪几部分图形组成的,然后利用公式求值.
20.如图,有两条公路OM,ON相交成30°,沿公路OM方向离两条公路的交叉处O点80米的A处有一所希望小学,当拖拉机沿ON方向行驶时,路两旁50米内会受到噪音影响,已知有两台相距30米的拖拉机正沿ON方向行驶,它们的速度均为5米/秒,问这两台拖拉机沿ON方向行驶时给小学带来噪音影响的时间是多少?
【考点】M8:点与圆的位置关系;N4:作图—应用与设计作图.
【专题】解答题
【分析】过点A作AC⊥ON,求出AC的长,第一台到B点时开始对学校有噪音影响,第一台到C点时,第二台到B点也开始有影响,第一台到D点,第二台到C点,直到第二台到D点噪音才消失.
【解答】解:如图,
过点A作AC⊥ON,
∵∠MON=30°,OA=80米,
∴AC=40米,
当第一台拖拉机到B点时对学校产生噪音影响,此时AB=50,
由勾股定理得:BC=30,
第一台拖拉机到D点时噪音消失,
所以CD=30.
由于两台拖拉机相距30米,则第一台到D点时第二台在C点,还须前行30米后才对学校没有噪音影响.
所以影响时间应是:90÷5=18秒.
答:这两台拖拉机沿ON方向行驶给小学带来噪音影响的时间是18秒.
【点评】本题考查的是点与圆的位置关系,根据拖拉机行驶的方向,速度,以及它在以A为圆心,50米为半径的圆内行驶的BD的弦长,求出对小学产生噪音的时间.
21.如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.
(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;
(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.
【考点】MD:切线的判定;D5:坐标与图形性质.
【专题】解答题
【分析】(1)在Rt△ABN中,求出AN、AB即可解决问题;
(2)连接MC,NC.只要证明∠MCD=90°即可;
【解答】解:(1)∵A的坐标为(0,6),N(0,2),
∴AN=4,
∵∠ABN=30°,∠ANB=90°,
∴AB=2AN=8,
∴由勾股定理可知:NB=
=
,
∴B(
,2).
(2)连接MC,NC
∵AN是⊙M的直径,
∴∠ACN=90°,
∴∠NCB=90°,
在Rt△NCB中,D为NB的中点,
∴CD=
NB=ND,
∴∠CND=∠NCD,
∵MC=MN,
∴∠MCN=∠MNC,
∵∠MNC+∠CND=90°,
∴∠MCN+∠NCD=90°,
即MC⊥CD.
∴直线CD是⊙M的切线.
【点评】本题考查圆的切线的判定、坐标与图形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
22.如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:
(1)∠BOC的度数;
(2)BE+CG的长;
(3)⊙O的半径.
【考点】MG:切线长定理.
【专题】解答题
【分析】(1)根据切线的性质得到OB平分∠EBF,OC平分∠GCF,OF⊥BC,再根据平行线的性质得∠GCF+∠EBF=180°,则有∠OBC+∠OCB=90°,即∠BOC=90°;
(2)由勾股定理可求得BC的长,进而由切线长定理即可得到BE+CG的长;
(3)最后由三角形面积公式即可求得OF的长.
【解答】解:(1)连接OF;根据切线长定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;
∵AB∥CD,
∴∠ABC+∠BCD=180°,
∴∠OBE+∠OCF=90°,
∴∠BOC=90°;
(2)由(1)知,∠BOC=90°.
∵OB=6cm,OC=8cm,
∴由勾股定理得到:BC=
=10cm,
∴BE+CG=BC=10cm.
(3)∵OF⊥BC,
∴OF=
=4.8cm.
【点评】此题主要是综合运用了切线长定理和切线的性质定理.注意:求直角三角形斜边上的高时,可以借助直角三角形的面积进行计算.
23.如图,在⊙O中,弦AB=弦CD,AB⊥CD于点E,且AE<EB,CE<ED,连结AO,DO,BD.
(1)求证:EB=ED.
(2)若AO=6,求
的长.
【考点】MN:弧长的计算;M5:圆周角定理.
【专题】解答题
【分析】(1)由AB=CD,根据圆心角、弧、弦的关系定理得出
=
,即
+
=
+
,那么
=
,根据圆周角定理得到∠CDB=∠ABD,利用等角对等边得出EB=ED;
(2)先求出∠CDB=∠ABD=45°,再根据圆周角定理得出∠AOB=90°.又AO=6,代入弧长公式计算即可求解.
【解答】(1)证明:∵AB=CD,
∴
=
,即
+
=
+
,
∴
=
,
∵
、
所对的圆周角分别为∠CDB,∠ABD,
∴∠CDB=∠ABD,
∴EB=ED;
(2)解:∵AB⊥CD,
∴∠CDB=∠ABD=45°,
∴∠AOD=90°.
∵AO=6,
∴
的长=
=3π.
【点评】本题考查了弧长的计算,圆心角、弧、弦的关系定理,圆周角定理,等腰三角形的判定,证明出∠CDB=∠ABD是解题的关键.
24.中国扇文化有着深厚的文化底蕴,是民族文化的一个组成部分,它与竹文化、佛教文化有着密切关系.历来中国被誉为制扇王国.扇子主要材料是:竹、木、纸、象牙、玳瑁、翡翠、飞禽翎毛、其它棕榈叶、槟榔叶、麦杆、蒲草等也能编制成各种千姿百态的日用工艺扇,造型优美,构造精制,经能工巧匠精心镂、雕、烫、钻或名人挥毫题诗作画,使扇子艺术身价倍增.折扇,古称“聚头扇“,或称为撒扇,或折叠扇,以其收拢时能够二头合并归一而得名.如图,折扇的骨柄OA的长为5a,扇面的宽CA的长为3a,折扇张开的角度为n°,求出扇面的面积(用代数式表示).
【考点】MO:扇形面积的计算.
【专题】解答题
【分析】由OA=5a、AC=3a得OC=2a,根据扇面的面积S=
﹣
列式化简即可得.
【解答】解:∵OA=5a,AC=3a,
∴OC=2a,
∴扇面的面积S=
﹣
=
﹣
=
=
=
.
【点评】本题主要考查扇形的面积计算,掌握扇形面积的计算公式和扇面面积=大扇形面积﹣小扇形面积是解题的关键.
- 1【332169】中考模拟卷(一)
- 2【332170】中考热点专题:湖南中考特色题型考前集训
- 3【332168】中考模拟卷(二)
- 4【332167】正投影
- 5【332166】浙江省温州市鹿城区中考二模卷
- 6【332165】浙江省宁波市象山县中考模拟卷
- 7【332164】浙江省湖州市吴兴区2019-2020学年七年级下学期期末练习数学试题(word版)
- 8【332163】浙江省杭州市余杭区中考模拟卷
- 9【332162】枣阳市2020年中考适应性考试 数学试题
- 10【332160】圆 综合练习题 教师版 含答案
- 11【332161】枣阳市2020年中考适应性考试 数学答案
- 12【332157】宜城市2020年中考适应性考试 数学试题
- 13【332159】用频率估计概率
- 14【332158】易错专题:二次函数的最值或函数值的范围
- 15【332156】宜城市2020年中考适应性考试 数学答案
- 16【332155】襄州区2020年中考适应性考试 数学试题
- 17【332154】襄州区2020年中考适应性考试 数学答案
- 18【332153】襄城区2020年中考适应性考试 数学试题
- 19【332152】襄城区2020年中考适应性考试 数学答案
- 20【332151】相似 复习
- 【332150】天津市南开区中考二模卷
- 【332149】提高试题含答案
- 【332148】随机事件
- 【332147】苏科九下期中测试卷(3)
- 【332146】苏科九下期中测试卷(2)
- 【332145】苏科九下期中测试卷(1)
- 【332144】苏科九下期末测试卷(3)
- 【332143】苏科九下期末测试卷(2)
- 【332142】苏科九下期末测试卷(1)
- 【332140】四川省成都市中考模拟卷(四)
- 【332141】四川省凉山州西昌市中考模拟卷
- 【332139】思想方法专题:相交线、平行线与平移中的思想方法
- 【332138】数学培优辅差工作计划3
- 【332137】数学培优辅差工作计划2
- 【332135】数学活动——利用测角仪测量物体的高度
- 【332136】数学培优辅差工作计划1
- 【332134】数学答案
- 【332133】实际问题与二次函数
- 【332132】山东省滕州市2020初中毕业模拟考试试题
- 【332131】山东省滨州市中考二模卷