【330812】课题:综合实践 一次函数模型的应用
课题:综合实践 一次函数模型的应用
【学习目标】
1.学会运用函数这种数学模型来解决生活和生产中的实际问题,增强数学应用意识;
2.能结合对函数关系的分析,尝试对变量的变化规律进行初步预测.
【学习重点】
建立一次函数模型,结合对函数关系的分析,对变量的变化规律作初步预测.
【学习难点】
建立函数模型.
【教学过程】
行为提示:
点燃激情,引发学生思考本节课学什么.
行为提示:
教会学生看书,自学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.
情景导入
问题导入:
1.下列数据是弹簧挂重物后的长度记录,测出弹簧长度y与重物质量x之间的函数关系式为y=0.5x+12,挂重30千克时,弹簧长度为27cm.
重物质量/kg |
0 |
1 |
2 |
3 |
4 |
… |
30 |
… |
弹簧长度/cm |
12 |
12.5 |
13 |
13.5 |
14 |
… |
|
… |
2.如何从表格中观察出两个变量间是否为一次函数?
答:每两个相邻的函数值的差与对应两个自变量值的差比值总相等,即可判定为一次函数.
自学互研
阅读教材P57~P59的内容,回答下列问题:
建立两个变量之间的函数模型,需要哪几个步骤?
答:1.将实验得到的数据在直角坐标系中描出;2.观察这些点的特征,确定选用的函数形式,并根据已知数据求出具体的函数表达式;3.进行检验;4.应用这个函数模型解决问题.
方法指导:
用函数值的差与对应自变量的差的比值是否相等,可判断是否为一次函数,此法不必说明道理,学生记住即可.
说明:
建立模型:有些规律问题可以借助函数思想来探讨,具体步骤:第一步,确定变量(如:本例中自变量为第x个图形,因变量为棋子的个数y);第二步:在直角坐标系中画出函数图象[如:第一个点的坐标为(1,4),依此类推可得到一系列的点的坐标];第三步:根据函数图象猜想并求出函数关系式;第四步:把另外的某一点代入验证,若成立,则用这个关系式去求解.
提示:
仿例3中根据表格中的数据结合点所在的位置共线可判断此函数是一次函数,然后用待定系数法求解析式,从而解决问题.
行为提示:
教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(或按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间. 范例:已知部分鞋子的型号“码”数与鞋子长度“cm”之间存在一种换算关系如下:
尺寸/cm |
15 |
20 |
25 |
型号/码 |
20 |
30 |
40 |
(1)通过画图、观察,猜想这种换算规律可能用哪种函数关系去模拟;
(2)设鞋子的长度为xcm,“码”数为y,试写出y与x之间的函数表达式;
(3)小刚平时穿39码的鞋子,那么他鞋长多少厘米?
(4)据说篮球巨人姚明的鞋长31cm,那么他穿多大码的鞋?
解:(1)一次函数,∵=2,=2,可知其为一次函数关系;
(2)设y=kx+b(k≠0),代入x=15,y=20;x=20,y=30,可求得函数解析式为y=2x-10;(3)24.5cm;(4)52码.
仿例1:问题情境:用同样大小的黑色棋子按如图所示的规律摆放,则第2015个图形共有多少枚棋子?
解:以图形的序号为横坐标,棋子的枚数为纵坐标,描点:(1,4)、(2,7)、(3,10)、(4,13),依次连接以上各点,所有的点在一条直线上.设直线解析式为y=kx+b,把(1,4)、(2,7)两点坐标代入得解得所以y=3x+1.验证:当x=3时,y=10.所以,另外一点也在这条直线上.
当x=2015时,y=3×2015+1=6046.即第2015个图形有6046枚棋子.
仿例3:某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:
x(元) |
15 |
20 |
25 |
30 |
35 |
… |
y(件) |
25 |
20 |
15 |
10 |
5 |
… |
(1)在直角坐标系中描出相应的点;
(2)猜测y(件)与x(元)之间的函数关系;
(3)当销售价定为28元时,求每日的销售利润.
解:(1)描点画图,如图所示;(2)由图象猜测y与x之间的函数关系为一次函数关系.设一次函数解析式为y=kx+b,则解得∴一次函数解析式为y=-x+40,将其余各点代入验证均适合.所以,所求一次函数的解析式为y=-x+40;(3)当x=28时,y=-28+40=12.∴所获销售利润为(28-10)×12=216(元).销售价定为28元时,每日的销售利润是216元.
交流展示
1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
知识模块 一次函数模型的应用
检测反馈
【当堂检测】
【课后检测】
课后反思
1.收获:________________________________________________________________________
2.存在困惑:________________________________________________________________________
- 1【330924】综合平移的坐标表示
- 2【330923】专题练习2:用计算器求平均数
- 3【330921】轴对称的坐标表示
- 4【330922】专题练习1:用计算器求平均数
- 5【330920】中心对称和中心对称图形
- 6【330919】直角三角形全等的判定
- 7【330918】直角三角巷的性质和判定(Ⅰ)
- 8【330917】正方形
- 9【330916】正比例函数的图象和性质
- 10【330915】长丰县2018-2019学年度第二学期期末考试八年级数学参考答案
- 11【330914】用待定系数法确定一次函数表达式
- 12【330913】一次函数知识点总结
- 13【330911】一次函数与一次方程的联系
- 14【330912】一次函数知识点归纳
- 15【330908】新人教版初中数学八年级下册同步练习试题及答案_第20章 数据的分析(22页)
- 16【330910】一次函数的图象和性质
- 17【330909】一次函数
- 18【330907】新人教版八年级数学下第18章《平行四边形》单元试卷
- 19【330906】新人教版八年级数学下第16章《二次根式》单元试卷
- 20【330904】湘教版八年级数学下《第5章数据的频数分布》单元试卷含答案
- 【330905】湘教版八年级数学下册全册综合测试题
- 【330903】湘教版八年级数学下《第3章图形与坐标》单元试卷含答案
- 【330901】湘教版八年级数学下《第1章直角三角形》单元试卷含答案
- 【330902】湘教版八年级数学下《第2章四边形》单元试卷含答案
- 【330900】五种类型一次函数解析式的确定
- 【330899】同步练习试题及答案_第19章 一次函数(10页)
- 【330898】同步练习试题及答案_第18章 平行四行形(40页)
- 【330897】同步练习试题及答案_第17章 勾股定理(20页)
- 【330896】同步练习试题及答案_第16章 二次根式(19页)
- 【330894】思想方法专题:直角三角形中的思想方法
- 【330895】特殊平行四边形知识点归纳
- 【330893】思想方法专题:矩形中的折叠问题
- 【330892】思想方法专题:勾股定理中的思想方法
- 【330891】数学培优辅差工作计划3
- 【330890】数学培优辅差工作计划2
- 【330889】数学培优辅差工作计划1
- 【330888】三角形的中位线
- 【330887】人教版数学八年级上同期末达标检测卷2
- 【330886】人教版数学八年级上同期末达标检测卷1
- 【330885】人教版数学八年级上册期中达标测试卷