【329755】5.4 应用二元一次方程组-增收节支 同步练习2
应用二元一次方程组—增收节支
1.某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口?
设城镇人口是x万,农村人口是y万,根据题意填写下表,并列出方程组求x、y的值.
|
城镇 |
农村 |
全市 |
现有人数(万人) |
x |
y |
42 |
一年后增加人口(万人) |
|
|
|
2.某汽车制造厂接受了在预定期限内生产一批汽车的任务,如果每天生产35辆,则差10辆才能完成任务;如果每天生产40辆,则可超额生产20辆.试求预定期限是多少天?计划生产多少辆汽车?
若设预定期限为x天,计划生产y辆汽车,请你根据题意填空,并列出方程组求x与y的值.
(1)若每天生产35辆,在预定期限x天内可生产__________辆,比计划产量y辆汽车__________(“多”或“少”)生产10辆,则可得二元一次方程______________________.
(2)若每天生产40辆,在预定期限x天内可生产__________辆,比计划产量y__________(填“多”或“少”)生产20辆,则可列二元一次方程_________________________.
(3)列方程组_________________________,并解得________.
3.一列快车长70米,慢车长80米,若两车同向而行,快车从追上慢车到完全离开慢车所用时间为20秒.若两车相向而行,则两车从相遇到离开时间为4秒,求两车每秒钟各行多少米?
如图1:
图1
若设快车每秒钟行x米,慢车每秒行y米.
根据题意填空:
(1)若同向而行,经过20秒快车行驶路程比慢车行驶路程多____米,可列方程_________.
(2)若相向而行,两车4秒钟共行驶__________米,可列方程__________________.
(3)由以上可得方程组__________________,解得________.
4.想一想:
一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车.已知过去两次租用这两种货车的情况如下表:
|
第一次 |
第二次 |
甲种货车辆数(辆) |
2 |
5 |
乙种货车辆数(辆) |
3 |
6 |
累计运货吨数(吨) |
15.5 |
35 |
现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,问货主应付运费多少元?
测验评价结果:________;对自己想说的一句话是:__________________。
5. 一计救厂
硫酸厂接到一批订单,急需一批浓度为60%的硫酸1200吨.厂长高兴地叫来生产科长告诉他快去准备.可生产科长一听就发愁了,说:“我们还有一大批浓度70%和浓度55%的硫酸,却没有浓度60%的硫酸,如果现在生产恐怕时间来不及了.”厂长一听就火:“我们已经订了合同,又收了人家的钱,如果到期交不了货,还得赔违约金,搞不好,这个月连工资都发不了,快去想想办法.”
生产科长愁眉苦脸回到车间.技术员小张忙过来询问发生了什么事.听科长一说,小张想了想,又拿出纸笔算了算,高兴地说:“科长,我们可以用现有的两种硫酸去配制呀!”“对呀,怎么我没想到呢?快来,我们仔细算一算.”
那么你知道这两种硫酸各需多少吨,才能配制成浓度为60%的硫酸1200吨吗?
参考答案
1.
,解得
填表略
2.(1)35x 少 35x+10=y
(2)40x 多 40x-20=y
(3)
,
3.(1)150米 20x-20y=150
(2)150 4x+4y=150
(3)
,
4.分析:应先求出这批货共有多少吨,即3辆甲种货车和5辆乙种货车共装多少吨货.
设甲、乙两种货车载重量分别为x吨、y吨.
根据题意得
,解得
∴30(3x+5y)=30(3×4+5×2.5)=735
答:货主应付运费735元.
5. 设需要x吨浓度为70%的硫酸和y吨浓度为55%的硫酸.
根
①②
由②得:0.7x+0.55y=720 ③
①×0.7得:0.7x+0.7y=840 ④
④-③得:0.15y=120,∴y=800
∴x=1200-y=1200-800=400
∴
所以需要400吨浓度为70%的硫酸,800吨浓度为55%的硫酸.
- 1【330924】综合平移的坐标表示
- 2【330923】专题练习2:用计算器求平均数
- 3【330921】轴对称的坐标表示
- 4【330922】专题练习1:用计算器求平均数
- 5【330920】中心对称和中心对称图形
- 6【330919】直角三角形全等的判定
- 7【330918】直角三角巷的性质和判定(Ⅰ)
- 8【330917】正方形
- 9【330916】正比例函数的图象和性质
- 10【330915】长丰县2018-2019学年度第二学期期末考试八年级数学参考答案
- 11【330914】用待定系数法确定一次函数表达式
- 12【330913】一次函数知识点总结
- 13【330911】一次函数与一次方程的联系
- 14【330912】一次函数知识点归纳
- 15【330908】新人教版初中数学八年级下册同步练习试题及答案_第20章 数据的分析(22页)
- 16【330910】一次函数的图象和性质
- 17【330909】一次函数
- 18【330907】新人教版八年级数学下第18章《平行四边形》单元试卷
- 19【330906】新人教版八年级数学下第16章《二次根式》单元试卷
- 20【330904】湘教版八年级数学下《第5章数据的频数分布》单元试卷含答案
- 【330905】湘教版八年级数学下册全册综合测试题
- 【330903】湘教版八年级数学下《第3章图形与坐标》单元试卷含答案
- 【330901】湘教版八年级数学下《第1章直角三角形》单元试卷含答案
- 【330902】湘教版八年级数学下《第2章四边形》单元试卷含答案
- 【330900】五种类型一次函数解析式的确定
- 【330899】同步练习试题及答案_第19章 一次函数(10页)
- 【330898】同步练习试题及答案_第18章 平行四行形(40页)
- 【330897】同步练习试题及答案_第17章 勾股定理(20页)
- 【330896】同步练习试题及答案_第16章 二次根式(19页)
- 【330894】思想方法专题:直角三角形中的思想方法
- 【330895】特殊平行四边形知识点归纳
- 【330893】思想方法专题:矩形中的折叠问题
- 【330892】思想方法专题:勾股定理中的思想方法
- 【330891】数学培优辅差工作计划3
- 【330890】数学培优辅差工作计划2
- 【330889】数学培优辅差工作计划1
- 【330888】三角形的中位线
- 【330887】人教版数学八年级上同期末达标检测卷2
- 【330886】人教版数学八年级上同期末达标检测卷1
- 【330885】人教版数学八年级上册期中达标测试卷