【329564】2.5矩形
2.5 矩形
第一课时
学习目标
1、理解矩形的意义,知道矩形与平行四边形的区别与联系。
2、掌握矩形的性质定理,会用定理进行有关的计算与证明。
3、掌握直角三角形斜边上中线的性质与应用。
学习重点
矩形的性质及“直角三角形斜边上的中线等于斜边的一半”
学习难点
矩形性质的得出及灵活应用。
一、自学教材,明确目标
阅读教材P58--- P60页内容
二、研读教材,解读目标
1. 叫作矩形。矩形是 的平行四边形。
2.矩形是轴对称图形吗?它有几条对称轴?
3.从矩形的意义可以探究矩形具有的性质:
(1)矩形具有平行四边形的一切性质吗?这些性质什么?
(2)矩形与平行四边形比较又有其特殊的性质,这些特殊的性质是什么?
(
3)用几何语言表述矩形的所有性质:
4.从矩形的性质可以说明:直角三角形斜边上的中线等于斜边的
如
图,在RtΔABC中,O是斜边AC的中点,
求证:OB=
AC
5
.
如图,在矩形ABCD中,AC与BD相交于点O角AOB=60O,AB=4㎝,
求矩形对角线的长。
三、巩固训练,达成目标:
1、由矩形的一个顶点向其所对的对角线引垂线,该垂线分直角为1:3两部分,则该垂线与另一条对角线的夹角为( )
A、22.5° B、45° C、30° D、60°
2、矩形的两条对角线的夹角为60°,较短的边长为4.5厘米,则对角线长为 。
3
、已知:如图2,矩形ABCD中,E是BC上一点,
于F,若
。求证:CE=EF。
4
、折叠矩形ABCD纸片,先折出折痕BD,再折叠使A落在对角线BD
上A′位置上,折痕为DG。AB=2,BC=1。
求AG的长。
5
、如图5,在矩形ABCD中,
,求这个矩形的周长。
6
、如图,将矩形ABCD沿对角线BD折叠,使点C落在F的位置,BF交AD于E,AD=8,AB=4,求△BED的面积。
7、在RtΔABC中,∠C=90°,CD是AB边上的中线,∠A=30°,AC=5
。求△ADC的周长。
课后反思:
第二课时
学习目标
1.理解并掌握矩形的判定方法。
2.能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力。
3. 培养综合应用知识分析解决问题的能力。
学习重点
矩形的判定.
学习难点
矩形的判定及性质的综合应用.
一、自学教材,明确目标:
阅读教材P61---62页内容
1.利用矩形的定义来判定一个四边形是平行四边形:
矩形定义:
2. 探究矩形的判定定理一:
的平行四边形是矩形。
如
图,已知:
求证:
证明:
3. 探究矩形的判定定理二
的四边形是矩形。
如
图,已知:
求证:
证明:
二、应用知识,实现目标:
1. 教材P63页练习:
2. 下列各句判定矩形的说法是否正确?为什么?
(1)有一个角是直角的四边形是矩形; ( )
(2)有四个角是直角的四边形是矩形; ( )
(3)四个角都相等的四边形是矩形; ( )
(4)对角线相等的四边形是矩形; ( )
(5)对角线相等且互相垂直的四边形是矩形; ( )
(6)对角线互相平分且相等的四边形是矩形; ( )
(7)对角线相等,且有一个角是直角的四边形是矩形; ( )
(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;( )
(9)两组对边分别平行,且对角线相等的四边形是矩形. ( )
三、巩固训练,达成目标:
1.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( ).
A.测量对角线是否相互平分 B.测量两组对边是否分别相等
C.测量一组对角是否都为直角 D.测量其中三角形是否都为直角
2.能判断四边形是矩形的条件是( )
A、两条对角线互相平分 B、两条对角线相等
C、两条对角线互相平分且相等 D、两条对角线互相垂直。
3.如图,EB=EC,EA=ED,AD=BC, ∠AEB=∠DEC。证明:四边形ABCD是矩形.
4.已知四边形ABCD中AC⊥BD,E、F、G、H分别是AB、BC、CD、DA的中点。
求证:四边形EFGH是矩形。
四、综合应用,拓展目标:
5
.
已知
的对角线AC,BD相交于O,△AOB是等边三角形,
,求这个平行四边形的面积
6.如图,M、N分别是平行四边形ABCD对边AD、BC的中点,且AD=2AB,
求
证,四边形PMQN是矩形。
已知:如图(1),
ABCD的四个内角的平分线分别相交于点E,F,G,H.
求证:四边形EFGH是矩形.
8
.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得
DE=CD.连结AE,BE,则四边形ACBE为矩形.
五、课后反思:
- 1【330924】综合平移的坐标表示
- 2【330923】专题练习2:用计算器求平均数
- 3【330921】轴对称的坐标表示
- 4【330922】专题练习1:用计算器求平均数
- 5【330920】中心对称和中心对称图形
- 6【330919】直角三角形全等的判定
- 7【330918】直角三角巷的性质和判定(Ⅰ)
- 8【330917】正方形
- 9【330916】正比例函数的图象和性质
- 10【330915】长丰县2018-2019学年度第二学期期末考试八年级数学参考答案
- 11【330914】用待定系数法确定一次函数表达式
- 12【330913】一次函数知识点总结
- 13【330911】一次函数与一次方程的联系
- 14【330912】一次函数知识点归纳
- 15【330908】新人教版初中数学八年级下册同步练习试题及答案_第20章 数据的分析(22页)
- 16【330910】一次函数的图象和性质
- 17【330909】一次函数
- 18【330907】新人教版八年级数学下第18章《平行四边形》单元试卷
- 19【330906】新人教版八年级数学下第16章《二次根式》单元试卷
- 20【330904】湘教版八年级数学下《第5章数据的频数分布》单元试卷含答案
- 【330905】湘教版八年级数学下册全册综合测试题
- 【330903】湘教版八年级数学下《第3章图形与坐标》单元试卷含答案
- 【330901】湘教版八年级数学下《第1章直角三角形》单元试卷含答案
- 【330902】湘教版八年级数学下《第2章四边形》单元试卷含答案
- 【330900】五种类型一次函数解析式的确定
- 【330899】同步练习试题及答案_第19章 一次函数(10页)
- 【330898】同步练习试题及答案_第18章 平行四行形(40页)
- 【330897】同步练习试题及答案_第17章 勾股定理(20页)
- 【330896】同步练习试题及答案_第16章 二次根式(19页)
- 【330894】思想方法专题:直角三角形中的思想方法
- 【330895】特殊平行四边形知识点归纳
- 【330893】思想方法专题:矩形中的折叠问题
- 【330892】思想方法专题:勾股定理中的思想方法
- 【330891】数学培优辅差工作计划3
- 【330890】数学培优辅差工作计划2
- 【330889】数学培优辅差工作计划1
- 【330888】三角形的中位线
- 【330887】人教版数学八年级上同期末达标检测卷2
- 【330886】人教版数学八年级上同期末达标检测卷1
- 【330885】人教版数学八年级上册期中达标测试卷