【323665】2023七年级数学上册 第三章 整式及其加减单元试卷(含解析)(新版)北师大版
学校:___________姓名:___________班级:___________考号:___________
一、选择题(每小题3分共30分)
1.下列代数式中符合书写要求的是( )
A.
B.n2 C.a÷b
D.
2.下列各式中是代数式的是( )
A.a2﹣b2=0 B.4>3 C.a D.5x﹣2≠0
3.下列各组的两个代数式中,是同类项的是( )
A.
与
B.
与
C.
与
D.
与
4.多项式
中,下列说法错误的是(
)
A.这是一个二次三项式 B.二次项系数是1
C.一次项系数是
D.常数项是
5.下列运算正确的是( )
A.
B.
C.
D.
6.如果
,那么代数式
的值为(
).
A.
B.
C.
D.
7.如果单项式
与
是同类项,那么
、
的值分别为(
)
A.
,
B.
,
C.
,
D.
,
8.整式
,0
,
,
,
,
,
中单项式的个数有 ( )
A、3个 B、4个 C、5个 D、6个
9.如果
和
是同类项,则
、
的值是(
)
A.
,
B.
,
C.
,
D.
,
10.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第
个图形需要黑色棋子的个数是
.
二、填空题(每小题3分共24分)
11.某商品标价是
元,现按标价打9折出售,则售价是
元.
12.单项式
的系数是
,次数是 .
13.若
,则
______________.
14.若
与
是同类项,则m+n=
.
15.观察下面单项式:
,-2
,根据你发现的规律,第6个式子是
.
16.观察下列各式:(1)42-12=3×5;(2)52-22=3×7;(3)62-32=3×9;………
则第n(n是正整数)个等式为_____________________________.
17.如图,是用火柴棒拼成的图形,第1个图形需3根火柴棒,第2个图形需5根火柴棒,第3个图形需7根火柴棒,第4个图形需
根火柴棒,……,则第
个图形需
根火柴棒。
18.一多项式为
…,按照此规律写下去,这个多项的的第八项是____。
三、解答题(19、20题每小题6分;21、22、23题每小题8分;24题10分)
19.化简(6分)
(1)
(2)2(a2b+ab2)-2(a2b-1)+2ab2-2
先化简,再求值:
(-4x2+2x-8)-(
x-1),其中x=
.
21.若2x|
2a+1
|y与
xy|
b |是同类项,其中a、b互为倒数,求2(a-2b2)-
(3b2-a)的值.
22.
(6分)
观察下列算式:①1×3-
=3-4=-1;②2×4-
=8-9=-1;
③3×5-
=15-16=-1;④
;……
(1)请你按以上规律写出第4个算式;
(2)请你把这个规律用含n的式子表示出来: = ;
(3)你认为(2)中所写的式子一定成立吗?说明理由。
23.如图,四边形ABCD与四边形CEFG是两个边长分别为
、
的正方形.(8分)
(1)用
、
的代数式表示三角形BGF的面积;
(2)当
=4cm,
=6cm时,求阴影部分的面积.
24.(本题满分10分)
用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地面:
(1)观察图形,填写下表:
图形 |
(1) |
(2) |
(3) |
|
黑色瓷砖的块数 |
4 |
7 |
|
|
黑白两种瓷砖的总块数 |
15 |
25 |
|
|
(2)依上推测,第n个图形中黑色瓷砖的块数为 ;黑白两种瓷砖的总块数为 (都用含n的代数式表示)
(3)白色瓷砖的块数可能比黑色瓷砖的块数多2015块吗?若能,求出是第几个图形;若不能,请说明理由.
参考答案
1.D
【解析】
试题分析:根据代数式的书写要求对各选项依次进行判断即可解答.
解:A、中的带分数要写成假分数;
B、中的2应写在字母的前面;
C、应写成分数的形式;
D、符合书写要求.
故选D.
点评:本题主要考查代数式的书写要求:
(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;
(2)数字与字母相乘时,数字要写在字母的前面;
(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.
2.C
【解析】
试题分析:本题根据代数式的定义对各选项进行分析即可求出答案.
解:A:a2﹣b2=0为等式,不为代数式,故本项错误.
B:4>3为不等式,故本项错误.
C;a为代数式,故本项正确.
D:5x﹣2≠0为不等式,故本项错误.
故选:C.
点评:本题考查代数式的定义,对各选项进行判定即可,注意等式,不等式不为代数式.
3.B
【解析】
试题分析:同类项所含字母相同,并且相同字母的指数也相等,同时所有的常数项都是同类项,因此本题选B.
考点:同类项
4.D
【解析】
试题分析:多项式
是二次三项式,二次项系数是1,一次项系数是3,常数项是-2,因此本题选D.
考点:多项式的有关概念
5.B
【解析】
试题分析:因为
不是同类型,所以不能合并,所以A错误;因为
,所以B正确;因为
,所以C错误;因为
,所以D错误,故选:B.
考点:1.合并同类项;2.同底数幂的运算.
6.C.
【解析】
试题分析:由
可求出5-a=0,b+3=0,从而可求:a=5,b=-3
所以:
故选C.
考点:1.非负数的性质;2.代数式求值.
7.A
【解析】
试题分析:如果单项式
与
是同类项,所以根据同类型的定义可得:
,所以
,
,故选:A.
考点:1.同类项;2.方程.
8.C
【解析】
试题分析:单项式是数和字母的乘积,或单个的数字,字母。所以单项式有
,0
,
,
,
,共5个
故选C
考点:单项式
9.B.
【解析】
试题分析:由同类项的定义,得:
,解这个方程组,得:
.故选B.
考点:1.同类项;2.解二元一次方程组.
10.n(n+2)
【解析】
试题分析:根据题意,分析可得第1个图形需要黑色棋子的个数为2×3-3,第2个图形需要黑色棋子的个数为3×4-4,第3个图形需要黑色棋子的个数为4×5-5,依此类推,可得第n个图形需要黑色棋子的个数是(n+1)(n+2)-(n+2),计算可得答案.
试题解析:第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋子2×3-3个,
第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子3×4-4个,
第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子4×5-5个,
按照这样的规律摆下去,
则第n个图形需要黑色棋子的个数是(n+1)(n+2)-(n+2)=n(n+2).
考点:规律型:图形变化类.
11.0.9a
【解析】
试题分析:某商品标价是
元,现按标价打9折出售,则售价0.9a元.
考点:代数式
12.系数是
,次数是3.
【解析】
试题分析:根据单项式的系数和次数的概念直接进行解答,注意π作为系数.
试题解析:单项式
的系数是
,次数是3.
考点:单项式.
13.6.
【解析】
试题分析:把9-a+2b变形为9-(a-2b),然后把a-2b=3代入即可.
试题解析:9-a+2b=9-(a-2b)=9-3=6
考点:有理数的减法.
14.-1.
【解析】
试题分析:根据同类项的定义可得:m=2,n+7=4,解得:m=2,n=-3,则m+n=-1.
考点:同类项的定义.
15.-32a6
【解析】
试题分析:根据规律知:
,第6个式子是-32a6
考点:数字的规律
16. (n+3)2=3(2n+3)
【解析】
试题分析:纵向观察下列各式:
(1)42-12=3×5;
(2)52-22=3×7;
(3)62-32=3×9;………
因为n是正整数,所以第二列表示为
,则第一列表示为
,第四列表示为
,所以则第n(n是正整数)个等式为
.
考点:1.列代数式;2.平方差公式.
17.9,2n+1.
【解析】
试题分析:根据数的方法可得第4个图形需要9根火柴棒,第n个图形需要3+2(n-1)=2n+1根.
考点:规律题.
18.-a
【解析】
试题分析:根据已知可得偶数项为负数,第八项a的次数为1次,b的次数为7次.
考点:规律题
19.(1)
;
(2)4ab2
【解析】
试题分析:先去括号,再合并同类项。
试题解析:(1)
;
(2)2(a2b+ab2)-2(a2b-1)+2ab2-2=2a2b+2ab2-2a2b+2+2ab2-2=4ab2
考点:整式加减
20.
.
【解析】
试题分析:原式去括号、合并同类项得到最简结果,再把x的值代入求值即可.
试题解析:原式=-x2+
x-2-
x+1
=-x2-1
当x=
时,原式=
.
考点:整式的加减---化简求值.
21.-8.
【解析】
试题分析:根据同类项的定义列方程:|2a+1|=1,|b|=1,解方程即可求得a,b的值;同时注意a与b互为负倒数这一条件;再将代数式2(a-2b2)-
(3b2-a)化简,将a,b的值代入即可.
试题解析:由题意可知|2a+1|=1,|b|=1,
解得a=1或0,b=1或-1.
又因为a与b互为负倒数,所以a=-1,b=-1.
原式=2a-8b2-
b2+
a=-8.
考点:1.整式的加减—化简求值;2.倒数;3.同类项.
22.(1)4×6-
=24-25=-11;(2)、n(n+2)-
=-1;(3)见解析.
【解析】
试题分析:根据给出的几个式子得出一般规律,然后根据多项式的乘法公式进行说明正确性.
试题解析:(1)4×6-
=24-25=-1
、n(n+2)-
=-1
(3)n(n+2)-
=
+2n-
-2n-1=-1.
考点:规律题.
23.(1)
(a+b)•b;(2)14cm2.
【解析】
试题分析:(1)根据三角形的面积公式,再根据各个四边形的边长,即可表示出三角形BGF的面积;
(2)阴影部分的面积等于正方形ABCD的面积+正方形CGFE的面积-△ADB的面积-△BFG的面积,然后把a,b的值代入即可求出答案.
试题解析:(1)根据题意得:
△BGF的面积是:
BG•FG=
(a+b)•b;
(2)阴影部分的面积=正方形ABCD的面积+正方形CGFE的面积-△ADB的面积-△BFG的面积
=a2+b2-
a2-
(a+b)•b
=
a2+
b2-
ab
当a=4cm,b=6cm时,上式=
×16+
×36-
×4×6=14cm2.
考点:1.列代数式;2.代数式求值.
24.(1)10, 35 2分(2)3n+1, 10n+5 6分
(3)
8分
解得:n=503
答:第503个图形. 10分
【解析】
试题分析:(1)第一个图形有黑色瓷砖3+1=4块,黑白两种瓷砖的总块数为3×5块;
第二个图形有黑色瓷砖3×2+1=7块,黑白两种瓷砖的总块数为5×5块;
第三个图形有黑色瓷砖3×3+1=10块,黑白两种瓷砖的总块数为7×5块;
(2)第n个图形中需要黑色瓷砖3n+1块,黑白两种瓷砖的总块数为(2n+1)×5块;
(3) 根据白色瓷砖的块数可能比黑色瓷砖的块数多2015块列出方程,解方程即可.
试题解析:(1)第一个图形有黑色瓷砖3+1=4块,黑白两种瓷砖的总块数为3×5=15块;
第二个图形有黑色瓷砖3×2+1=7块,黑白两种瓷砖的总块数为5×5=25块;
第三个图形有黑色瓷砖3×3+1=10块,黑白两种瓷砖的总块数为7×5=35块;
(2)第n个图形中需要黑色瓷砖3n+1块,黑白两种瓷砖的总块数为(2n+1)×5=10n+5块;
(3)根据题意可得:
,解得:n=503
答:第503个图形.
考点:1.探寻规律;2.列代数式及求值;3.一元一次方程的应用.
- 1【354787】初一期末试卷一
- 2【354786】初一期末试卷五
- 3【354785】初一期末试卷四
- 4【354784】初一期末试卷三
- 5【354783】初一期末试卷二
- 6【350123】第6章 知识点梳理
- 7【350122】第5章 知识点梳理
- 8【350121】第4章 知识点梳理
- 9【350120】第3章 知识点梳理
- 10【350119】第2章 知识点梳理
- 11【350118】第1章 知识点梳理
- 12【350117】6.2 方差
- 13【350116】6.1.3 众数
- 14【350115】6.1.2 中位数
- 15【350114】6.1.1 第2课时 加权平均数
- 16【350112】5.3 图形变换的简单应用
- 17【350113】6.1.1 第1课时 平均数
- 18【350111】5.2 旋转
- 19【350110】5.1.2 轴对称变换
- 20【350109】5.1.1 轴对称图形
- 【350108】4.6 两条平行线间的距离
- 【350107】4.5 第2课时 垂线段与点到直线的距离
- 【350106】4.5 第1课时 垂线
- 【350105】4.4 第2课时 平行线的判定方法2,3
- 【350104】4.4 第1课时 平行线的判定方法1
- 【350103】4.3 平行线的性质
- 【350102】4.2 平移
- 【350101】4.1.2 相交直线所成的角
- 【350100】4.1.1 相交与平行
- 【350099】3.3 第2课时 利用完全平方公式进行因式分解
- 【350098】3.3 第1课时 利用平方差公式进行因式分解
- 【350097】3.2 第2课时 提多项式公因式
- 【350096】3.2 第1课时 提单项式公因式
- 【350095】3.1 多项式的因式分解
- 【350094】2.2.3 运用乘法公式进行计算
- 【350093】2.2.2 第2课时 运用完全平方公式进行计算
- 【350092】2.2.2 第1课时 完全平方公式
- 【350091】2.2.1 平方差公式
- 【350090】2.1.4 第2课时 多项式与多项式相乘
- 【350089】2.1.4 第1课时 单项式与多项式相乘