【349977】第三章单元检测卷
单元检测卷
时间:120分钟 满分:120分
题号 |
一 |
二 |
三 |
总分 |
得分 |
|
|
|
|
一、选择题(每小题3分,共30分)
1.在圆的面积公式S=πr2中,常量为( )
A.S B.π C.r D.S和r
2.用总长50m的篱笆围成长方形场地,长方形的面积S(m2)与一边长l(m)之间的关系式为S=l(25-l),那么下列说法正确的是( )
A.l是常量,S是变量
B.25是常量,S与l是变量,l是因变量
C.25是常量,S与l是变量,S是因变量
D.以上说法都不对
3.如果圆珠笔有12支,总售价为18元,用y(元)表示圆珠笔的总售价,x表示圆珠笔的支数,那么y与x之间的关系应该是( )
A.y=12x B.y=18x C.y=x D.y=x
4.如图是护士统计一位病人的体温变化图,这位病人在16时的体温约是( )
A.37.8℃ B.38℃ C.38.7℃ D.39.1℃
5.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b与下降高度d的关系,下面能表示这种关系的式子是( )
d |
50 |
80 |
100 |
150 |
b |
25 |
40 |
50 |
75 |
A.b=d2 B.b=2d C.b= D.b=d+25
6.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,这一过程中汽车的行驶速度v和行驶时间t之间的关系用图象表示,其图象可能是( )
7.某梯形上底长、下底长分别是x,y,高是6,面积是24,则y与x之间的关系式是( )
A.y=-x+8 B.y=-x+4 C.y=x-8 D.y=x-4
8.如图是某港口一天24小时的水深情况变化图象,其中点A处表示的是4时水深16米,点B处表示的是20时水深16米.某船在港口航行时,其水深至少要有16米,该船在港口装卸货物的时间需8小时,另外进港停靠和离港共需4小时.若此船要在进港的当天返航,则该船必须在一天中( )
A.4时至8时内进港 B.4时至12时内进港
C.8时至12时内进港 D.8时至20时内进港
第8题图 第9题图
9.星期天,小王去朋友家借书,如图是他离家的距离y(千米)与时间x(分钟)的关系图象.根据图象信息,下列说法正确的是( )
A.小王去时的速度大于回家的速度
B.小王在朋友家停留了10分钟
C.小王去时花的时间少于回家时所花的时间
D.小王去时走下坡路,回家时走上坡路
10.如图,在正方形ABCD中,AB=2,E是AB的中点,动点P从点B开始,沿着边BC,CD匀速运动到点D.设点P运动的时间为x,EP=y,那么能表示y与x关系的图象大致是( )
二、填空题(每小题3分,共24分)
11.大家知道,冰层越厚,所承受的压力越大,其中自变量是__________,因变量是________________.
12.如图是某市某天的气温T(℃)随时间t(时)变化的图象,则由图象可知,该天最高气温与最低气温之差为________℃.
13.某复印店用电脑编辑并打印一张文稿收费2元,再每复印一张收费0.3元,则总收费y(元)与同样文稿的数量x(张)之间的关系式是______________.
14.1~6个月的婴儿生长发育得非常快,出生体重为4000克的婴儿,他们的体重y(克)和月龄x(月)之间的关系如下表:
月龄/(月) |
1 |
2 |
3 |
4 |
5 |
体重/(克) |
4700 |
5400 |
6100 |
6800 |
7500 |
则6个月大的婴儿的体重约为________.
15.如图所示的图象反映的过程是:小明从家去书店看书,又去学校取封信后马上回家,其中x表示时间,y表示小明离开家的距离,则小明从学校回家的平均速度为________千米/时.
16.某地区截止到栽有果树2400棵,计划今后每年栽果树300棵,x年后,总共栽有果树y棵,则y与x之间的关系式为______________;当x=2时,y的值为________.
17.某城市大剧院的一部分为扇形,观众席的座位设置如下表:
排数n |
1 |
2 |
3 |
4 |
… |
座位数m |
38 |
41 |
44 |
47 |
… |
则每排的座位数m与排数n的关系式为____________.
18.如图是小明从学校到家里行进的路程s(米)与时间t(分钟)的关系图象.观察图象得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走得快.其中正确的有__________(填序号).
三、解答题(共66分)
19.(8分)下表记录的是某橘农去年橘子的销售额(元)随橘子销量(千克)变化的有关数据,请根据表中数据回答下列问题:
销量(千克) |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
销售额(元) |
2 |
4 |
6 |
8 |
10 |
12 |
14 |
16 |
18 |
(1)表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)当销量是5千克时,销售额是多少?
(3)估计当销量是50千克时,销售额是多少?
20.(8分)在如图所示的三个图象中,有两个图象能近似地刻画如下a,b两个情境:
情境a:小芳离开家不久,发现把作业本忘在家里,于是返回家里找到了作业本再去学校;
情境b:小芳从家出发,走了一段路程后,为了赶时间以更快的速度前进.
(1)情境a,b所对应的图象分别是________,________(填序号);
(2)请你为剩下的图象写出一个适合的情境.
21.(8分)如图,圆柱的高是4cm,当圆柱底面半径r(cm)变化时,圆柱的体积V(cm3)也随之变化.
(1)在这个变化过程中,自变量是________,因变量是________;
(2)圆柱的体积V与底面半径r的关系式是____________;
(3)当圆柱的底面半径由2变化到8时,圆柱的体积由________cm3变化到________cm3.
22.(8分)心理学家发现学生对概念的接受能力y与提出概念所用的时间x(分)之间有如下关系:(其中0≤x≤30)
提出概念所用的时间(x) |
2 |
5 |
7 |
10 |
12 |
13 |
14 |
17 |
20 |
对概念的接受能力(y) |
47.8 |
53.5 |
56.3 |
59 |
59.8 |
59.9 |
59.8 |
58.3 |
55 |
(1)当提出概念所用的时间是10分钟时,学生的接受能力是多少?
(2)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强;
(3)从表中可知,时间x在什么范围内,学生的接受能力逐步增强?时间x在什么范围内,学生的接受能力逐步降低?
23.(10分)温度的变化是人们在生活中经常谈论的话题,请你根据图象(如图)回答下列问题:
(1)上午9时的温度是多少?这一天的最高温度是多少?
(2)这一天的温差是多少?从最低温度到最高温度经过了多长时间?
(3)在什么时间范围内温度在下降?图中的A点表示的是什么?
24.(12分)圣诞老人上午8:00从家里出发,骑车去一家超市购物,然后从这家超市回到家中,圣诞老人离家的距离s(千米)和所经过的时间t(分钟)之间的关系如图所示,请根据图象回答问题:
(1)圣诞老人去超市途中的速度是多少?回家途中的速度是多少?
(2)圣诞老人在超市逗留了多长时间?
(3)圣诞老人在来去的途中,离家2千米处的时间是几时几分?
25.(12分)某车间的甲、乙两名工人分别同时生产同种零件,他们一天生产零件y(个)与生产时间t(时)的关系如图所示.
(1)根据图象填空:
①甲、乙中,________先完成一天的生产任务;在生产过程中,________因机器故障停止生产________小时;
②当甲、乙所生产的零件个数相等时,求t的值;
(2)谁在哪一段时间内的生产速度最快?求该段时间内,他每小时生产零件的个数.
参考答案与解析
1.B 2.C 3.D 4.C 5.C
6.B 7.A 8.A 9.B 10.C
11.冰层的厚度 冰层所承受的压力
12.12 13.y=0.3x+1.7 14.8200克 15.6
16.y=2400+300x 3000 17.m=3n+35 18.①②④
19.解:(1)表中反映了橘子的销量与销售额之间的关系,橘子的销量是自变量,销售额是因变量.(4分)
(2)当销量是5千克时,销售额是10元.(6分)
(3)当销量是50千克时,销售额是100元.(8分)
20.解:(1)图③ 图①(4分)
(2)答案不唯一,如:小芳离开家不久,休息了一会儿,又走回了家.(8分)
21.解:(1)半径r 体积V(2分)
(2)V=4πr2(5分)
(3)16π 256π(8分)
22.解:(1)当x=10时,y=59,所以时间是10分钟时,学生的接受能力是59.(2分)
(2)当x=13时,y的值最大是59.9,所以提出概念13分钟时,学生的接受能力最强.(4分)
(3)由表中数据可知当2<x<13时,y值逐渐增大,学生的接受能力逐步增强;当13<x<20时,y值逐渐减小,学生的接受能力逐步降低.(8分)
23.解:(1)利用图象得出上午9时的温度是27℃,这一天的最高温度是37℃.(3分)
(2)这一天的温差是37-23=14(℃),从最低温度到最高温度经过了15-3=12(小时).(6分)
(3)温度下降的时间范围为0时至3时及15时至24时,图中的A点表示的是21点时的气温.(10分)
24.解:(1)由图象可知去超市用了10分钟,从超市返回用了20分钟,家到超市的距离是4千米,(2分)故圣诞老人去超市的速度是4÷10=(千米/分),从超市返回的速度是4÷20=(千米/分).(4分)
(2)在超市逗留的时间是40-10=30(分钟).(7分)
(3)去超市的过程中2÷=5(分钟),返回的过程中2÷=10(分钟),40+10=50(分钟).故圣诞老人在8:05和8:50时离家2千米.(12分)
25.解:(1)①甲 甲 3 (3分)
②由图象可知甲、乙所生产的零件个数相等时有两个时刻.第一个时刻为t=3时,(5分)设第二个时刻为t=x时,则此时甲生产零件10+(x-5)=15x-65(个),乙生产零件4+(x-2)=6x-8(个),则15x-65=6x-8,解得x=.综上可知,当t=3和时,甲、乙所生产的零件个数相等.(9分)
(2)甲在5~7时的生产速度最快,(10分)∵=15(个),∴他在这段时间内每小时生产零件15个.(12分)
www.ishijuan.cn 爱试卷为中小学老师学生提供免费的试卷下载关注”试卷家“微信公众号免费下载试卷
- 1【354787】初一期末试卷一
- 2【354786】初一期末试卷五
- 3【354785】初一期末试卷四
- 4【354784】初一期末试卷三
- 5【354783】初一期末试卷二
- 6【350123】第6章 知识点梳理
- 7【350122】第5章 知识点梳理
- 8【350121】第4章 知识点梳理
- 9【350120】第3章 知识点梳理
- 10【350119】第2章 知识点梳理
- 11【350118】第1章 知识点梳理
- 12【350117】6.2 方差
- 13【350116】6.1.3 众数
- 14【350115】6.1.2 中位数
- 15【350114】6.1.1 第2课时 加权平均数
- 16【350112】5.3 图形变换的简单应用
- 17【350113】6.1.1 第1课时 平均数
- 18【350111】5.2 旋转
- 19【350110】5.1.2 轴对称变换
- 20【350109】5.1.1 轴对称图形
- 【350108】4.6 两条平行线间的距离
- 【350107】4.5 第2课时 垂线段与点到直线的距离
- 【350106】4.5 第1课时 垂线
- 【350105】4.4 第2课时 平行线的判定方法2,3
- 【350104】4.4 第1课时 平行线的判定方法1
- 【350103】4.3 平行线的性质
- 【350102】4.2 平移
- 【350101】4.1.2 相交直线所成的角
- 【350100】4.1.1 相交与平行
- 【350099】3.3 第2课时 利用完全平方公式进行因式分解
- 【350098】3.3 第1课时 利用平方差公式进行因式分解
- 【350097】3.2 第2课时 提多项式公因式
- 【350096】3.2 第1课时 提单项式公因式
- 【350095】3.1 多项式的因式分解
- 【350094】2.2.3 运用乘法公式进行计算
- 【350093】2.2.2 第2课时 运用完全平方公式进行计算
- 【350092】2.2.2 第1课时 完全平方公式
- 【350091】2.2.1 平方差公式
- 【350090】2.1.4 第2课时 多项式与多项式相乘
- 【350089】2.1.4 第1课时 单项式与多项式相乘