【332198】【推荐】28.1 锐角三角函数(第1、2课时)-同步练习(2)B
28.1 锐角三角函数——正弦、余弦、正切
一、基础·巩固达标
1.在Rt△ABC中,如果
各边长
度都扩大2倍,则锐角A的正弦
值和余弦值(
)
A.都没有变化 B.都扩大2倍 C.都缩小2倍 D.不能确定
2.已知α是锐角,且cosα=
,则sinα=(
)
A.
B.
C.
D.
3.Rt△ABC中,∠C=90°,AC∶BC=1∶
,则cosA=_______,tanA=_________.
4.设α、β为锐角,若
sinα=
,则α=________;若tanβ=
,则β=_________.
5.用计算器计算:sin51°30′+ cos49°50′-tan46°10′的值是_________.
6.△ABC中,∠BAC=90°,AD是高,BD=9,tanB=
,求AD、AC、BC.
二、综合•
应用达标
7.已知α是锐角,且sinα=
,则cos(90°-α)=(
)
A.
B.
C.
D.
8.若α为锐角,tana=3,求
的值.
9.已知方程x2-5x·sinα+1=0的一个根为
,且α为锐角,求tanα.
10.四边形是不稳定的.如图28.1-14,一矩形的木架变形为平行四边形,当其面积变为原矩形的一半时,你能求出∠α的值吗?
图28.1-14
三、回顾•展望达标
11.三角形在正方形网格纸中的位置如图28.3-15所示,则sinα的值是(
)
A.
B.
C.
D.
图28.1-15
图28.1-17
图28.1
-16
12.如图28.1-17,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径
,AC=2,则cosB的值是(
)
A.
B.
C.
D.
13.在△ABC中,∠C=90°,AB=15,sinA=
,则BC=(
)
A.45
B.5
C.
D.
14.如图28.3-16,CD是Rt△ABC斜边上的高,AC=4,BC=3,则cos∠BCD=( )
A.
B.
C.
D.
15.课本中
,是这样引入“锐角三角函数”的:如图28.1-18,在锐角α的终边OB上,任意取两点P和P1,分别过点P和P1做始边OA的垂线PM和P1M1,M和M1为垂足.我们规定,比值________叫做角α的正弦,比值________叫做角α的余弦.这是因为,由相似三角形的性质,可推得关于这些比值得两个等式:________,________.说明这些比值都是由________唯一确定的,而与P点在角的终边上的位置无关,所以,这些比值都是自变量α的函数.
图28.1-18 图28.1-19
16.计算:2-1-tan60°+(
-1)0+
;
17.已知:如图28.1-19,△ABC内接于⊙O,点D在OC的延长线上,sinB
=
,∠CAD=30°.
(1)求证:AD是⊙O的切线;
(2)若OD⊥AB
,
BC=5,求AD的长.
[来源:Z#xx#k.Com]
参考答案
一、基础·巩固达标
1.在Rt△ABC中,如果
各边长
度都扩大2倍,则锐角A的正弦值和余弦值(
)
A.都没有变化
B.都扩大2倍
C.都缩小2倍
D.不能确定
思路解析:当Rt△ABC的各边长度都扩大二倍,所得新三角形与原三角形相似,故锐角A大小不变.
答案:A
2.已知α是锐角,且cosα=
,则sinα=(
)
A.
B.
C.
D.
思路解析:由cosα=
,可以设α的邻边为4k,斜边为5k,根据勾股定理,α的对边为3k,则sinα=
.
答案:C
3.Rt△ABC
中,∠C=90°,AC∶BC=1∶
,则cosA=_______,tanA=_________.
思路解析:画出图形,设AC=x,则BC=
,由勾股定理求出AB=2x,再根据三角函数的定义计算.
答案:
,
4.设α、β为锐角,若sinα=
,则α=________;若tanβ=
,则β=_________.
思路解析:要熟记特殊角的三角函数值.
答案:60°,30°
5.用计算器计算:sin51°30′+ cos49°50′-tan46°10′的值是_________.
思路解析:用计算器算三角函数的方法和操作步骤.
答案:0.386 0
6.△ABC中,∠BAC=90°,AD是高,BD=9,tanB=
,求AD、AC、BC.
思路解析:由条件可知△ABC、△ABD、△ADC是相似的直角三角形,∠B=∠CAD,于是有tan∠CAD=tanB=
,所以可以在△ABD、△ADC中反复地运用三角函数的定义和勾股定理来求解.
解:根据题意,设AD=4k,BD=3k,则AB=5k.
在Rt△ABC中,∵tanB=
,∴AC=
AB=
k.∵BD=9,∴k=3.
所以AD=4×3=12,AC=
×3=20.
根据勾股定理
.
二、综合•应用达标
7.已知α是锐角,且sinα=
,则cos(90°-α)=(
)
A.
B.
C.
D.
思路解析:方法1.运用三角
函数的定义,把α作为直角三角形的一个锐角看待,从而对边、邻边、斜边之比为4∶3∶5,(90°-α)是三角形中的另一个锐角,邻边与斜边之比为4∶5,cos(90°-α)=
.
方法2.利用三角函数中互余角关系“
sinα=cos(90°-α)”.
答案:A
8.若α为锐角,tana=3,求
的值.
思路解析:方法1.运用正切函数的定义,把α作为直角三角形的一个锐角看待,从而直角三角形三边之比为3∶1∶
,sinα=
,cosα=
,分别代入所求式子中.
方法2.利用tanα=
计算,因为cos
α≠0,分子、分母同除以cosα,化简计算.
9.已知方程x2-5x·sinα+1
=0的一个根为
,且α为锐角,求tanα.
思路解析:由根与系数的关系可先求出方程的另一个根是
,进而可求出sinα=
,然后利用前面介绍过的方法求tanα.
解:设方程的另一个根为x2,则(
)x2=1
∴x2=
∴5sinα=(
)+(
),解得sinα=
.
设锐角α所在的直角三角形的对边为4k,则斜边为5k,邻边为3k,
∴tanα=
.
10.四边形是不稳定的.如图28.1-14,一矩形的木架变形为平行四边形,当其面积变为原矩形的一半时,你能求出∠α的值吗?
图28.1-14
思路解析:面积的改变实际上是平行四边形的高在改变,结合图形,可以知道h=
,再在高所在的直角三角形中由三角函数求出α的度数.
解:设原矩形边长分别为a,b,则面积为ab,
由题意得,
平行四边形的面积S=
ab.
又因为S=ah=a(bsinα),所以
ab=absinα,即sinα=
.
所以α=30°.
三、回顾•展望达标
11.三角形在正方形网格纸中的位置如图28.3-15所示,则sinα的值是(
)[来源:学科网ZXXK]
图28.1-15
A.
B.
C.
D.
思路解析:观察格点中的直角三角形,用三角函数的定义.
答案:C
12.如图28.1-17,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径
,AC=2,则cosB的值是(
)
图28.1-17
A.
B.
C.
D.
思路解析:利用∠BCD=∠A计算.
答案:D
13.在△ABC中,∠C=90°,AB=15,sinA=
,则BC=(
)
A.45
B.5
C.
D.
思路解析:根据定义sinA=
,BC=AB·sinA.
答案:B
14.如图28.3-16,CD是Rt△ABC斜边上的高,AC=4,BC=3,则cos∠BCD=( )
图28.1
-16
A.
B.
C.
D.
思路解析:直径所对的圆周角是直角,设法把∠B转移到Rt△ADC中,由“同圆或等圆中,同弧或等弧所对
的圆周角相等”,得到∠ADC=∠B.
答案:B[来源:Z,xx,k.Com]
15.课本中,是这样引入“锐角三角函数”的:如图28.1-18,在锐角α的终边OB上,任意取两点P和P1,分别过点P和P1做始边OA的垂线PM和P1M1,M和M1为垂足.我们规定,比值________叫做角α的正弦,比值________叫做角α的余弦.这是因为,由相似三角形的性质,可推得关于这些比值得两个等式:________,________.说明这些比值都是由________唯一确定的,而与P点在角的终边上的位置无关,所以,这些比值都是自变量α的函数.
图28.1-18
思路解析:正弦、余弦函数的定义.
答案:
,锐角α
16.计算:2-1-tan60°+(
-1)0+
;
思路解析:特殊角的三角函数,零指数次幂的意义,负指数次幂的意义.
解:2-1-tan60°+(
-1)0+|
|=
-
+1+
=
.
17.已知:如图28.1-19,△ABC内接于⊙O,点D在OC的延长线上,sinB=
,∠CAD=30°.
图28.1-19
(1)求证:AD是⊙O的切线;
(2)若OD⊥AB
,BC=5,求AD的长.
思路解析:圆的切线问
题跟过切点的半径有关,连接OA,证∠OAD=90°.
由sinB=
可以得到∠B=30°,由此得到圆心角∠AOD=60°,从而得到△ACO是等边三角形,由此∠OAD=90°.
AD是Rt△OAD的边,有三角函数可以求出其长度.
(1)证明:如图,连接OA.
∵sinB=
,∴∠B=30°.∴∠AOD=60°.
∵OA=OC,∴△ACO是等边三角形.[来源:学科网ZXXK]
∴∠OAD=60°.
∴∠OAD=90°.∴AD是⊙O的切线.
(2)解:∵OD⊥AB ∴ OC垂直平分AB.
∴ AC=BC=5.∴OA=5.
在Rt△OAD中,由正切定义,有tan∠AOD=
.
∴ AD=
.
- 1【354787】初一期末试卷一
- 2【354786】初一期末试卷五
- 3【354785】初一期末试卷四
- 4【354784】初一期末试卷三
- 5【354783】初一期末试卷二
- 6【350123】第6章 知识点梳理
- 7【350122】第5章 知识点梳理
- 8【350121】第4章 知识点梳理
- 9【350120】第3章 知识点梳理
- 10【350119】第2章 知识点梳理
- 11【350118】第1章 知识点梳理
- 12【350117】6.2 方差
- 13【350116】6.1.3 众数
- 14【350115】6.1.2 中位数
- 15【350114】6.1.1 第2课时 加权平均数
- 16【350112】5.3 图形变换的简单应用
- 17【350113】6.1.1 第1课时 平均数
- 18【350111】5.2 旋转
- 19【350110】5.1.2 轴对称变换
- 20【350109】5.1.1 轴对称图形
- 【350108】4.6 两条平行线间的距离
- 【350107】4.5 第2课时 垂线段与点到直线的距离
- 【350106】4.5 第1课时 垂线
- 【350105】4.4 第2课时 平行线的判定方法2,3
- 【350104】4.4 第1课时 平行线的判定方法1
- 【350103】4.3 平行线的性质
- 【350102】4.2 平移
- 【350101】4.1.2 相交直线所成的角
- 【350100】4.1.1 相交与平行
- 【350099】3.3 第2课时 利用完全平方公式进行因式分解
- 【350098】3.3 第1课时 利用平方差公式进行因式分解
- 【350097】3.2 第2课时 提多项式公因式
- 【350096】3.2 第1课时 提单项式公因式
- 【350095】3.1 多项式的因式分解
- 【350094】2.2.3 运用乘法公式进行计算
- 【350093】2.2.2 第2课时 运用完全平方公式进行计算
- 【350092】2.2.2 第1课时 完全平方公式
- 【350091】2.2.1 平方差公式
- 【350090】2.1.4 第2课时 多项式与多项式相乘
- 【350089】2.1.4 第1课时 单项式与多项式相乘