当前位置:首页 > 八年级 > 数学试卷

【323211】(福建专版)2024春八年级数学下册 第19章 矩形、菱形与正方形学情评估(新版)华东

时间:2025-01-15 20:26:22 作者: 字数:10057字
简介:


19章学情评估

一、选择题(本题共10小题,每小题5分,共50)

1.矩形具有而菱形不具有的性质是(  )

A.两组对边分别平行 B.对角线相等

C.对角线互相平分 D.两组对角分别相等

2.如图,矩形ABCD的对角线交于点O,若∠AOD120°AC4,则CD的长为(  )

A. B. C2 D3

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/130/" title="正方形" class="c1" target="_blank">正方形</a> <a href="/tags/751/" title="福建" class="c1" target="_blank">福建</a> <a href="/tags/848/" title="华东" class="c1" target="_blank">华东</a> <a href="/tags/899/" title="菱形" class="c1" target="_blank">菱形</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

(2)

3.如图,在矩形OABC中,OA2OC1,把矩形OABC放在数轴上,O在原点,OA在正半轴上,把矩形的对角线OB绕着原点O顺时针旋转到数轴上,点B的对应点为B,则点B表示的实数是(  )

A2 B1 C. D.-

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/130/" title="正方形" class="c1" target="_blank">正方形</a> <a href="/tags/751/" title="福建" class="c1" target="_blank">福建</a> <a href="/tags/848/" title="华东" class="c1" target="_blank">华东</a> <a href="/tags/899/" title="菱形" class="c1" target="_blank">菱形</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> (3)    <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/130/" title="正方形" class="c1" target="_blank">正方形</a> <a href="/tags/751/" title="福建" class="c1" target="_blank">福建</a> <a href="/tags/848/" title="华东" class="c1" target="_blank">华东</a> <a href="/tags/899/" title="菱形" class="c1" target="_blank">菱形</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> (4)

4.如图,在正方形ABCD中,O是对角线ACBD的交点,过点OOEOF,分别交ABBC于点EF.AE4CF3,则EF的长为(  )

A7 B5 C4 D3

5.如图,在矩形ABCD中,BC8CD6,将△ABE沿BE折叠,使点A恰好落在对角线BD上的点F处,则DE的长是(  )

A3 B. C5 D.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/130/" title="正方形" class="c1" target="_blank">正方形</a> <a href="/tags/751/" title="福建" class="c1" target="_blank">福建</a> <a href="/tags/848/" title="华东" class="c1" target="_blank">华东</a> <a href="/tags/899/" title="菱形" class="c1" target="_blank">菱形</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

(5)

6.如图,在菱形ABCD中,MN分别在ABCD上,且AMCNMNAC交于点O,连结BO.若∠DAC28°,则∠OBC的度数为(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/130/" title="正方形" class="c1" target="_blank">正方形</a> <a href="/tags/751/" title="福建" class="c1" target="_blank">福建</a> <a href="/tags/848/" title="华东" class="c1" target="_blank">华东</a> <a href="/tags/899/" title="菱形" class="c1" target="_blank">菱形</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

(6)

A28° B52° C62° D72°

7.在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的条件是(  )

AACBDABCDABCD

BADBC,∠BAD=∠BCD

CAOBOCODOACBD

DAOCOBODOABBC

8.如图,在正方形ABCD中,以对角线AC为一边作菱形AEFC,连结AF,则∠FAB的度数等于(  )

A22.5° B45° C30° D15°

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/130/" title="正方形" class="c1" target="_blank">正方形</a> <a href="/tags/751/" title="福建" class="c1" target="_blank">福建</a> <a href="/tags/848/" title="华东" class="c1" target="_blank">华东</a> <a href="/tags/899/" title="菱形" class="c1" target="_blank">菱形</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

(8) 

9.如图,已知等边三角形ABC与正方形DEFG,其中DE两点分别在ABBC上,且BDBE.AB10DE4,则△EFC的面积为(  )

A7.5 B8 C6 D10

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/130/" title="正方形" class="c1" target="_blank">正方形</a> <a href="/tags/751/" title="福建" class="c1" target="_blank">福建</a> <a href="/tags/848/" title="华东" class="c1" target="_blank">华东</a> <a href="/tags/899/" title="菱形" class="c1" target="_blank">菱形</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> (9)   <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/130/" title="正方形" class="c1" target="_blank">正方形</a> <a href="/tags/751/" title="福建" class="c1" target="_blank">福建</a> <a href="/tags/848/" title="华东" class="c1" target="_blank">华东</a> <a href="/tags/899/" title="菱形" class="c1" target="_blank">菱形</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> (10)

10.如图,在平面直角坐标系中,菱形ABCD的顶点AB在反比例函数y(k>0x>0)的图象上,且两点的横坐标分别为14,对角线BDx轴.若菱形ABCD的面积为,则k的值为(  )

A. B. C4 D5

二、填空题(本题共6小题,每小题5分,共30)

11.如图,在平面直角坐标系中,▱MNEF的两条对角线MENF交于原点O,点F的坐标是(32),则点N的坐标是________

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/130/" title="正方形" class="c1" target="_blank">正方形</a> <a href="/tags/751/" title="福建" class="c1" target="_blank">福建</a> <a href="/tags/848/" title="华东" class="c1" target="_blank">华东</a> <a href="/tags/899/" title="菱形" class="c1" target="_blank">菱形</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

(11)

12.如图,在矩形ABCD中,对角线ACBD相交于点OAEBD于点E,若AB6OC5,则AE________

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/130/" title="正方形" class="c1" target="_blank">正方形</a> <a href="/tags/751/" title="福建" class="c1" target="_blank">福建</a> <a href="/tags/848/" title="华东" class="c1" target="_blank">华东</a> <a href="/tags/899/" title="菱形" class="c1" target="_blank">菱形</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> (12)    <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/130/" title="正方形" class="c1" target="_blank">正方形</a> <a href="/tags/751/" title="福建" class="c1" target="_blank">福建</a> <a href="/tags/848/" title="华东" class="c1" target="_blank">华东</a> <a href="/tags/899/" title="菱形" class="c1" target="_blank">菱形</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> (13)

13.如图,在矩形ABCD中,AEAF,连结EF,过点EEHEFDC于点H,过点FFGEFBC于点G,连结GH,当ABAD满足________(填数量关系)时,四边形EFGH为矩形.

14.如图,在Rt△ABC中,∠ACB90°AC3BC4,分别以ABACBC为边在AB的同侧作正方形ABEF、正方形ACPQ、正方形BDMC,四块阴影部分的面积分别为S1S2S3S4,则S1S2S3S4________

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/130/" title="正方形" class="c1" target="_blank">正方形</a> <a href="/tags/751/" title="福建" class="c1" target="_blank">福建</a> <a href="/tags/848/" title="华东" class="c1" target="_blank">华东</a> <a href="/tags/899/" title="菱形" class="c1" target="_blank">菱形</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> (14)   <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/130/" title="正方形" class="c1" target="_blank">正方形</a> <a href="/tags/751/" title="福建" class="c1" target="_blank">福建</a> <a href="/tags/848/" title="华东" class="c1" target="_blank">华东</a> <a href="/tags/899/" title="菱形" class="c1" target="_blank">菱形</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> (15)

15.如图,在菱形ABCD中,对角线ACBD的交点为OAC6CD5.若点EBC上,且AEBC,则AE的长为______

16.如图,正方形ABCD的边长为4,点E在边DC上运动(不含端点),以AE为腰作等腰直角三角形AEF,连结DF.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/130/" title="正方形" class="c1" target="_blank">正方形</a> <a href="/tags/751/" title="福建" class="c1" target="_blank">福建</a> <a href="/tags/848/" title="华东" class="c1" target="_blank">华东</a> <a href="/tags/899/" title="菱形" class="c1" target="_blank">菱形</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

(16)

下面有三个说法:

DE1时,AF=;

DE2时,点BDF共线;

DE=时,△ADF与△EDF面积相等.

所有正确说法的序号是__________

三、解答题(本题共7小题,共70)

17(8)如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BECFEFDF,求证:BFCD.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/130/" title="正方形" class="c1" target="_blank">正方形</a> <a href="/tags/751/" title="福建" class="c1" target="_blank">福建</a> <a href="/tags/848/" title="华东" class="c1" target="_blank">华东</a> <a href="/tags/899/" title="菱形" class="c1" target="_blank">菱形</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

(17)






18.(8)如图,在四边形ABCD中,ADBCAMBC,垂足为MANDC,垂足为N.若∠BAD=∠BCDAMAN,求证:四边形ABCD是菱形.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/130/" title="正方形" class="c1" target="_blank">正方形</a> <a href="/tags/751/" title="福建" class="c1" target="_blank">福建</a> <a href="/tags/848/" title="华东" class="c1" target="_blank">华东</a> <a href="/tags/899/" title="菱形" class="c1" target="_blank">菱形</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

(18)












19(8)如图,O是线段AB上的一点,OAOCOD平分∠AOC,交AC于点DOF平分∠COBCFOF于点F.

(1)求证:四边形CDOF是矩形;

(2)当∠AOC90°时,四边形CDOF是正方形吗?请说明理由.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/130/" title="正方形" class="c1" target="_blank">正方形</a> <a href="/tags/751/" title="福建" class="c1" target="_blank">福建</a> <a href="/tags/848/" title="华东" class="c1" target="_blank">华东</a> <a href="/tags/899/" title="菱形" class="c1" target="_blank">菱形</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

(19)








20(10)如图,已知正方形ABCD,点E在边CD上.

(1)尺规作图:在边BC上找点F,使得∠AED=∠AEF(不写作法,保留作图痕迹)

(2)探究DEEFBF的数量关系,并说明理由.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/130/" title="正方形" class="c1" target="_blank">正方形</a> <a href="/tags/751/" title="福建" class="c1" target="_blank">福建</a> <a href="/tags/848/" title="华东" class="c1" target="_blank">华东</a> <a href="/tags/899/" title="菱形" class="c1" target="_blank">菱形</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

(20)







21(10)如图,在四边形ABCD中,ADBC,∠B90°AD24 cmBC26 cm.P从点A出发,以1 cm/s的速度向点D运动;点Q从点C同时出发,以3 cm/s的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.当经过多少秒时,分别得到PQCDPQCD?

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/130/" title="正方形" class="c1" target="_blank">正方形</a> <a href="/tags/751/" title="福建" class="c1" target="_blank">福建</a> <a href="/tags/848/" title="华东" class="c1" target="_blank">华东</a> <a href="/tags/899/" title="菱形" class="c1" target="_blank">菱形</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

(21)









22(12)图①是某重型卡车,图②是一个木箱从重型卡车上卸下时的平面示意图.已知重型卡车车身的高度AC4 m,卸货时会利用到辅助挡板BA,此时BA落在BA(BABA)ACAC,经过测量得AC2 mED5 m,四边形DEFG为矩形,当木箱底部顶点G与点A重合时(AC为水平线,AMBNAC互相平行)

(1)BA的长;

(2)求图中木箱上点F到直线AC的距离.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/130/" title="正方形" class="c1" target="_blank">正方形</a> <a href="/tags/751/" title="福建" class="c1" target="_blank">福建</a> <a href="/tags/848/" title="华东" class="c1" target="_blank">华东</a> <a href="/tags/899/" title="菱形" class="c1" target="_blank">菱形</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

(22)








23(14)已知在矩形ABCD中,BC12AB10,四边形EFGH的三个顶点EFH分别在矩形ABCD的边ABBCDA上,AE2.

(1)如图①,当四边形EFGH为正方形时,求△GFC的面积;

(2)如图②,当四边形EFGH为菱形,且BFa时,求△GFC的面积(用含a的代数式表示)

(3)(2)的条件下,当△GFC的面积等于6时,求EF的长.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/130/" title="正方形" class="c1" target="_blank">正方形</a> <a href="/tags/751/" title="福建" class="c1" target="_blank">福建</a> <a href="/tags/848/" title="华东" class="c1" target="_blank">华东</a> <a href="/tags/899/" title="菱形" class="c1" target="_blank">菱形</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

(23)



答案

一、1.B 2.C 3.C 4.B 5.C 6.C 7.C 8.A

9C 思路点睛:作DMBCFNBC,垂足分别为MN,证明△DME≌△ENF,结合等边三角形的判定与性质得到MENF2,根据面积公式SEFC×EC×FN计算即可.

10D

二、11.(3,-2) 12.4.8 13.ABAD 14.18

15. 思路点睛:根据菱形的性质以及勾股定理,可求得OD4,进而可知BD2OD8,由菱形的面积公式可知S菱形ABCDAC·BD24,由AEBC,可得S菱形ABCDBC·AE24,求解即可得到答案.

16.①②

三、17.证明:∵四边形ABCD是矩形,

∴∠B=∠C90°.∴∠EFB+∠BEF90°.

EFDF,∴∠EFD90°.

∴∠EFB+∠CFD90°.

∴∠BEF=∠CFD.

在△BEF和△CFD中,

∴△BEF≌△CFD.∴BFCD.

18.证明:∵ADBC

∴∠BAD+∠B180°.

∵∠BAD=∠BCD

∴∠B+∠BCD180°.∴ABCD.

四边形ABCD是平行四边形.

∴∠B=∠D.

AMBCANDC

∴∠AMB=∠AND90°.

在△AMB和△AND中,

∴△AMB≌△AND.∴ABAD.

四边形ABCD是菱形.

19(1)证明:∵OD平分∠AOCOF平分∠COB

∴∠AOC2∠COD,∠COB2∠COF.

∵∠AOC+∠COB180°

2∠COD2∠COF180°.

∴∠COD+∠COF90°,即∠DOF90°.

OAOCOD平分∠AOC

ODAC,即∠CDO90°.

CFOF,∴∠CFO90°

四边形CDOF是矩形.

(2)解:当∠AOC90°时,四边形CDOF是正方形.理由如下:∵OAOCOD平分∠AOC,∠AOC90°

∴∠ACO=∠A45°,∠COD=∠AOC45°.

∴∠ACO=∠COD.∴CDOD.

又∵四边形CDOF是矩形,

四边形CDOF是正方形.

20.解:(1)如图.

(2)EFDEBF.理由:如图,

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/130/" title="正方形" class="c1" target="_blank">正方形</a> <a href="/tags/751/" title="福建" class="c1" target="_blank">福建</a> <a href="/tags/848/" title="华东" class="c1" target="_blank">华东</a> <a href="/tags/899/" title="菱形" class="c1" target="_blank">菱形</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

(20)

连结AF,过点AAQEF于点Q,则∠AQE90°.

四边形ABCD是正方形,

∴∠D=∠B90°ABAD.

∴∠AQE=∠D.

AEAE,∠AED=∠AEF

∴△ADE≌△AQE.

QEDEADAQ.∴AQAB.

Rt△AQFRt△ABF中,

Rt△AQF≌Rt△ABF.∴BFQF.

EFQEQF,∴EFDEBF.

21.解:设经过t s(0≤t≤)

PQCD,则四边形PQCD为平行四边形.

PDQCPQCD,∴24t3t,解得t6.

经过6 sPQCDPQCD.

PQCD,如图所示,则四边形PQCD是梯形,

分别过点PDBC边的垂线PEDF,垂足分别为EF,则易得CFEQADBF24 cmPDEF.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/130/" title="正方形" class="c1" target="_blank">正方形</a> <a href="/tags/751/" title="福建" class="c1" target="_blank">福建</a> <a href="/tags/848/" title="华东" class="c1" target="_blank">华东</a> <a href="/tags/899/" title="菱形" class="c1" target="_blank">菱形</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

(21)

AD24 cmBC26 cm,∴CFBCBF2 cm.

PD2CFCQ

(24t)43t,解得t7.∴经过7 sPQCD.

综上所述,经过6 sPQCD;经过6 s7 sPQCD.

22.解:(1)∵ACAC,∴∠BCA90°.

Rt△BCA中,设BABAx m

BCACAB(4x)m

BC2AC2BA2,即(4x)222x2

解得x=,即BA的长为.

(2)如图,过点FFQAC于点Q,交NB于点H,易得∠FHB90°FQAC,∴∠BFH=∠GBC.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/130/" title="正方形" class="c1" target="_blank">正方形</a> <a href="/tags/751/" title="福建" class="c1" target="_blank">福建</a> <a href="/tags/848/" title="华东" class="c1" target="_blank">华东</a> <a href="/tags/899/" title="菱形" class="c1" target="_blank">菱形</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

(22)

四边形DEFG为矩形,ED5 m,∴FGED5 m

FBFGBG5-=(m),∴FBBG.

∵∠FHB=∠BCG90°,∠BFH=∠GBC

∴△FHB≌△BCG,∴FHBC.

由题意得HQBC,∴FHHQBC.

BAmAC4 m,∴BC4-=(m)

F到直线AC的距离为+=3(m)

23.解:(1)如图①,过点GGMBC于点M

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/130/" title="正方形" class="c1" target="_blank">正方形</a> <a href="/tags/751/" title="福建" class="c1" target="_blank">福建</a> <a href="/tags/848/" title="华东" class="c1" target="_blank">华东</a> <a href="/tags/899/" title="菱形" class="c1" target="_blank">菱形</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>    <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/130/" title="正方形" class="c1" target="_blank">正方形</a> <a href="/tags/751/" title="福建" class="c1" target="_blank">福建</a> <a href="/tags/848/" title="华东" class="c1" target="_blank">华东</a> <a href="/tags/899/" title="菱形" class="c1" target="_blank">菱形</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

(23)

在正方形EFGH中,∠HEF90°EHEF

∴∠AEH+∠BEF90°.

在矩形ABCD中,∠A=∠B90°

∴∠AEH+∠AHE90°,∴∠AHE=∠BEF

∴△AHE≌△BEF,∴BFAE2.

FCBCBF12210.

同上可证△MFG≌△BEF.∴GMBF2.

SGFCFC·GM×10×210.

(2)如图②,过点GGNBCBC的延长线于点N,连结HF.在矩形ABCD中,∠A90°ADBC

∴∠AHF=∠NFH.

在菱形EFGH中,EHFGEHFG

∴∠EHF=∠GFH,∴∠AHE=∠NFG.

又∵∠A=∠GNF90°EHGF

∴△AHE≌△NFG,∴GNAE2.

FCBCBF12a

SGFCFC·GN(12a)×212a.

(3)SGFC6时,12a6,∴a6.

在△BEF中,EF===10.