【330178】19.3.1 第2课时 矩形的判定
19.3.1矩形
第2课时 矩形的判定
教学目标
1.理解并掌握矩形的判定方法;(重点)
2.能熟练掌握矩形的判定及性质的综合应用.(难点)
教学过程
一、情境导入
小明想要做一个矩形相框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形相框?看看谁的方法可行!
二、合作探究
探究点一:矩形的判定
【类型一】 对角线相等的平行四边形是矩形
如图所示,外面的四边形ABCD是矩形,对角线AC,BD相交于点O,里面的四边形MPNQ的四个顶点都在矩形ABCD的对角线上,且AM=BP=CN=DQ.求证:四边形MPNQ是矩形.
解析:要证明四边形MPNQ是矩形,应先证明它是平行四边形,由已知可再证明其对角线相等.
证明:∵四边形ABCD是矩形,∴OA=OB=OC=OD.
∵AM=BP=CN=DQ,
∴OM=OP=ON=OQ.
∴四边形MPNQ是平行四边形.
又∵OM+ON=OQ+OP,
∴MN=PQ.
∴平行四边形MPNQ是矩形(对角线相等的平行四边形是矩形).
方法总结:在判断四边形的形状时,若已知条件中有对角线,可首先考虑能否用对角线的条件证明矩形.
【类型二】 有三个角是直角的四边形是矩形
如图,GE∥HF,直线AB与GE交于点A,与HF交于点B,AC、BC、BD、AD分别是∠EAB、∠FBA、∠ABH、∠GAB的平分线.求证:四边形ADBC是矩形.
解析:利用已知条件,证明四边形ADBC有三个角是直角.
证明:∵GE∥HF,
∴∠GAB+∠ABH=180°.
∵AD、BD分别是∠GAB、∠ABH的平分线,
∴∠1=∠GAB,∠4=∠ABH,
∴∠1+∠4=(∠GAB+∠ABH)=×180°=90°,
∴∠ADB=180°-(∠1+∠4)=90°.
同理可得∠ACB=90°.
又∵∠ABH+∠FBA=180°,
∠4=∠ABH,∠2=∠FBA,
∴∠2+∠4=(∠ABH+∠FBA)=×180°=90°,即∠DBC=90°.
∴四边形ADBC是矩形.
方法总结:矩形的判定方法和矩形的性质是相辅相成的,注意它们的区别和联系,此判定方法只要说明一个四边形有三个角是直角,则这个四边形就是矩形.
【类型三】 有一个角是直角的平行四边形是矩形
如图所示,在△ABC中,D为BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD.连接BF.
(1)BD与DC有什么数量关系?请说明理由;
(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.
解析:(1)根据“两直线平行,内错角相等”得出∠AFE=∠DCE,然后利用“AAS”证明△AEF和△DEC全等,根据“全等三角形对应边相等”可得AF=CD,再利用等量代换即可得BD=CD;(2)先利用“一组对边平行且相等的四边形是平行四边形”证明四边形AFBD是平行四边形,再根据“有一个角是直角的平行四边形是矩形”可知∠ADB=90°.由等腰三角形“三线合一”的性质可知△ABC满足的条件必须是AB=AC.
解:(1)BD=CD.理由如下:
∵AF∥BC,
∴∠AFE=∠DCE.
∵E是AD的中点,
∴AE=DE.
在△AEF和△DEC中,
∴△AEF≌△DEC(AAS).
∴AF=CD.
∵AF=BD,
∴BD=DC;
(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:
∵AF∥BD,AF=BD,
∴四边形AFBD是平行四边形.
∵AB=AC,BD=DC,
∴∠ADB=90°.
∴四边形AFBD是矩形.
方法总结:本题综合考查了矩形和全等三角形的判定方法,明确有“一个角是直角的平行四边形是矩形”是解本题的关键.
探究点二:矩形的性质和判定的综合运用
如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,且AE=BF=CG=DH.
(1)求证:四边形EFGH是矩形;
(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.
解析:(1)证明四边形EFGH对角线相等且互相平分;(2)根据题设求出矩形的边长CD和BC,然后根据矩形面积公式求得.
(1)证明:∵四边形ABCD是矩形,∴OA=OB=OC=OD.∵AE=BF=CG=DH,∴AO-AE=OB-BF=CO-CG=DO-DH,即OE=OF=OG=OH,∴四边形EFGH是矩形;
(2)解:∵G是OC的中点,∴GO=GC.∵DG⊥AC,∴∠DGO=∠DGC=90°.又∵DG=DG,∴△DGC≌△DGO,∴CD=OD.∵F是BO中点,OF=2cm,∴BO=4cm.∵四边形ABCD是矩形,∴DO=BO=4cm,∴DC=4cm,DB=8cm,∴CB==4cm,∴S矩形ABCD=4×4=16(cm2).
方法总结:首先要判定四边形是平行四边形,然后证明对角线相等.
三、板书设计
教学反思
通过探索与交流,得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题.通过开放式命题,尝试从不同角度寻求解决问题的方法.通过动手实践、合作探索、小组交流,培养学生的逻辑推理能力.
- 1【330924】综合平移的坐标表示
- 2【330923】专题练习2:用计算器求平均数
- 3【330921】轴对称的坐标表示
- 4【330922】专题练习1:用计算器求平均数
- 5【330920】中心对称和中心对称图形
- 6【330919】直角三角形全等的判定
- 7【330918】直角三角巷的性质和判定(Ⅰ)
- 8【330917】正方形
- 9【330916】正比例函数的图象和性质
- 10【330915】长丰县2018-2019学年度第二学期期末考试八年级数学参考答案
- 11【330914】用待定系数法确定一次函数表达式
- 12【330913】一次函数知识点总结
- 13【330911】一次函数与一次方程的联系
- 14【330912】一次函数知识点归纳
- 15【330908】新人教版初中数学八年级下册同步练习试题及答案_第20章 数据的分析(22页)
- 16【330910】一次函数的图象和性质
- 17【330909】一次函数
- 18【330907】新人教版八年级数学下第18章《平行四边形》单元试卷
- 19【330906】新人教版八年级数学下第16章《二次根式》单元试卷
- 20【330904】湘教版八年级数学下《第5章数据的频数分布》单元试卷含答案
- 【330905】湘教版八年级数学下册全册综合测试题
- 【330903】湘教版八年级数学下《第3章图形与坐标》单元试卷含答案
- 【330901】湘教版八年级数学下《第1章直角三角形》单元试卷含答案
- 【330902】湘教版八年级数学下《第2章四边形》单元试卷含答案
- 【330900】五种类型一次函数解析式的确定
- 【330899】同步练习试题及答案_第19章 一次函数(10页)
- 【330898】同步练习试题及答案_第18章 平行四行形(40页)
- 【330897】同步练习试题及答案_第17章 勾股定理(20页)
- 【330896】同步练习试题及答案_第16章 二次根式(19页)
- 【330894】思想方法专题:直角三角形中的思想方法
- 【330895】特殊平行四边形知识点归纳
- 【330893】思想方法专题:矩形中的折叠问题
- 【330892】思想方法专题:勾股定理中的思想方法
- 【330891】数学培优辅差工作计划3
- 【330890】数学培优辅差工作计划2
- 【330889】数学培优辅差工作计划1
- 【330888】三角形的中位线
- 【330887】人教版数学八年级上同期末达标检测卷2
- 【330886】人教版数学八年级上同期末达标检测卷1
- 【330885】人教版数学八年级上册期中达标测试卷