【329971】13.4课题学习 最短路径问题
13.4课题学习 最短路径问题
学习目标
1、复习轴对称的知识,会画轴对称图形。
2、能够利用轴对称的知识解决实际问题。
3、培养同学们自学意思和探究能力。
学习重点:会画轴对称图形。
学习难点:会用轴对称知识解决实际问题。
课前预习
1、以前学过的线段最短问题有哪些?还记得吗?
2、如何做直线外一点关于这条直线的对称点?
课内探究
问题1 如图牧马人从A地出发,到一条笔直的河边L饮马,然后到B地。牧马人到河边什么地方饮马,可使所走的路径最短?
作点A或B关于直线L的对称点A′或B′,再连接AB′或BA′与对称轴L的交点即为所求。
(证明方法为:三角形两边之和大于第三边)
问题2 如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,桥造成在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直)
分析引导:我们可以把河岸看成两条平行线,N为直线b上一个动点,MN垂直于直线b,交直线a于点M,这样问题可以转化成:当点N在直线b的什么位置时AM+MN+NB最小。
解:将AM沿与河岸垂直的方向平移,点M移动到点N,点A移动到点A′,则AA′=MN,AM+NB=A′N+NB.连接A′,B两点的线中,线段A′B最短。因此线段A′B与直线b的交点N的位置即为所求。
你能证明为什么点N即为所求的点吗?
课堂归纳
在解决最短路径问题时,我们通常利用轴对称、平移等变化把已知问题转化为容易解决的问题,从而作出最短路径的选择。
- 1【330924】综合平移的坐标表示
- 2【330923】专题练习2:用计算器求平均数
- 3【330921】轴对称的坐标表示
- 4【330922】专题练习1:用计算器求平均数
- 5【330920】中心对称和中心对称图形
- 6【330919】直角三角形全等的判定
- 7【330918】直角三角巷的性质和判定(Ⅰ)
- 8【330917】正方形
- 9【330916】正比例函数的图象和性质
- 10【330915】长丰县2018-2019学年度第二学期期末考试八年级数学参考答案
- 11【330914】用待定系数法确定一次函数表达式
- 12【330913】一次函数知识点总结
- 13【330911】一次函数与一次方程的联系
- 14【330912】一次函数知识点归纳
- 15【330908】新人教版初中数学八年级下册同步练习试题及答案_第20章 数据的分析(22页)
- 16【330910】一次函数的图象和性质
- 17【330909】一次函数
- 18【330907】新人教版八年级数学下第18章《平行四边形》单元试卷
- 19【330906】新人教版八年级数学下第16章《二次根式》单元试卷
- 20【330904】湘教版八年级数学下《第5章数据的频数分布》单元试卷含答案
- 【330905】湘教版八年级数学下册全册综合测试题
- 【330903】湘教版八年级数学下《第3章图形与坐标》单元试卷含答案
- 【330901】湘教版八年级数学下《第1章直角三角形》单元试卷含答案
- 【330902】湘教版八年级数学下《第2章四边形》单元试卷含答案
- 【330900】五种类型一次函数解析式的确定
- 【330899】同步练习试题及答案_第19章 一次函数(10页)
- 【330898】同步练习试题及答案_第18章 平行四行形(40页)
- 【330897】同步练习试题及答案_第17章 勾股定理(20页)
- 【330896】同步练习试题及答案_第16章 二次根式(19页)
- 【330894】思想方法专题:直角三角形中的思想方法
- 【330895】特殊平行四边形知识点归纳
- 【330893】思想方法专题:矩形中的折叠问题
- 【330892】思想方法专题:勾股定理中的思想方法
- 【330891】数学培优辅差工作计划3
- 【330890】数学培优辅差工作计划2
- 【330889】数学培优辅差工作计划1
- 【330888】三角形的中位线
- 【330887】人教版数学八年级上同期末达标检测卷2
- 【330886】人教版数学八年级上同期末达标检测卷1
- 【330885】人教版数学八年级上册期中达标测试卷