当前位置:首页 > 八年级 > 数学试卷

【330870】人教版第13章 轴对称 测试卷(3)

时间:2025-02-11 18:52:45 作者: 字数:40072字
简介:

13 轴对称 测试卷(3

一、选择题

1.如图,在矩形ABCD中,AB=10BC=5.若点MN分别是线段ACAB上的两个动点,则BM+MN的最小值为(  )

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

A10 B8 C5 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> D6

2.如图,四边形ABCD中,C=50°B=D=90°EF分别是BCDC上的点,当AEF的周长最小时,EAF的度数为(  )

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

A50° B60° C70° D80°

3.如图,直线l外不重合的两点AB,在直线l上求作一点C,使得AC+BC的长度最短,作法为:作点B关于直线l的对称点B′连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是(  )

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

A.转化思想

B.三角形的两边之和大于第三边

C.两点之间,线段最短

D.三角形的一个外角大于与它不相邻的任意一个内角

4.如图,点PAOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,PMN周长的最小值是5cm,则AOB的度数是(  )

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

A25° B30° C35° D40°

5.如图,正方形ABCD的面积为12ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为(  )

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

A <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> B2 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> C2 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> D <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

6.如图,在RtABC中,C=90°AC=6BC=8DAB上的动点,EBC上的动点,则AE+DE的最小值为(  )

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

A3+2 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> B10 C <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> D <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

7.如图,ABO的直径,AB=8,点MO上,MAB=20°N是弧MB的中点,P是直径AB上的一动点.若MN=1,则PMN周长的最小值为(  )

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

A4 B5 C6 D7

8.如图,MN是半径为1O的直径,点AO上,AMN=30°,点B为劣弧AN的中点.P是直径MN上一动点,则PA+PB的最小值为(  )

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

A <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> B1 C2 D2 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

9.如图,在RtABC中,ACB=90°AC=6BC=8ADBAC的平分线.若PQ分别是ADAC上的动点,则PC+PQ的最小值是(  )

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

A <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> B4 C <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> D5

 

二、填空题

10.如图,已知正方形ABCD边长为3,点EAB边上且BE=1,点PQ分别是边BCCD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是  

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

11.如图,在边长为2的等边ABC中,DBC的中点,EAC边上一点,则BE+DE的最小值为  

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

12.如图,AOB=30°,点MN分别在边OAOB上,且OM=1ON=3,点PQ分别在边OBOA上,则MP+PQ+QN的最小值是  

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

13.在每个小正方形的边长为1的网格中.点ABCD均在格点上,点EF分别为线段BCDB上的动点,且BE=DF

(Ⅰ)如图,当BE= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> 时,计算AE+AF的值等于  

(Ⅱ)当AE+AF取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段AEAF,并简要说明点E和点F的位置如何找到的(不要求证明)  

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

14.如图,正方形ABCD的边长为4EBC上一点,BE=1FAB上一点,AF=2PAC上一点,则PF+PE的最小值为  

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

15.如图,AOB=30°,点MN分别是射线OAOB上的动点,OP平分AOB,且OP=6,当PMN的周长取最小值时,四边形PMON的面积为  

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

16.在O中,ABO的直径,AB=8cm <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> MAB上一动点,CM+DM的最小值是  cm

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

17.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是  

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

18.如图,菱形ABCD的边长为2DAB=60°EBC的中点,在对角线AC上存在一点P,使PBE的周长最小,则PBE的周长的最小值为  

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

19.如图,在边长为4的正方形ABCD中,EAB边上的一点,且AE=3,点Q为对角线AC上的动点,则BEQ周长的最小值为  

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

20.如图,菱形ABCD中,对角线AC=6BD=8MN分别是BCCD的中点,P是线段BD上的一个动点,则PM+PN的最小值是  

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

21.在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A10),B20)是x轴上的两点,则PA+PB的最小值为  

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

22.菱形ABCD的边长为2ABC=60°EAD边中点,点P是对角线BD上的动点,当AP+PE的值最小时,PC的长是  

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

23.如图,在平面直角坐标系中,已知点A23),点B(﹣21),在x轴上存在点PAB两点的距离之和最小,则P点的坐标是  

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

 

三、解答题

24.如图,在平面直角坐标系中,已知点A03),B24),C40),D2,﹣3),E0,﹣4).写出DCB关于y轴对称点FGH的坐标,并画出FGH点.顺次而平滑地连接ABCDEFGHA各点.观察你画出的图形说明它具有怎样的性质,它象我们熟知的什么图形?

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

25.如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB和直线MN,点ABMN均在小正方形的顶点上.

1)在方格纸中画四边形ABCD(四边形的各顶点均在小正方形的顶点上),使四边形ABCD是以直线MN为对称轴的轴对称图形,点A的对称点为点D,点B的对称点为点C

2)请直接写出四边形ABCD的周长.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

26.在图示的方格纸中

1)作出ABC关于MN对称的图形A1B1C1

2)说明A2B2C2是由A1B1C1经过怎样的平移得到的?

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

27.如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点EBC边上,且点E在小正方形的顶点上,连接AE

1)在图中画出AEF,使AEFAEB关于直线AE对称,点F与点B是对称点;

2)请直接写出AEF与四边形ABCD重叠部分的面积.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

28.如图,已知抛物线的顶点为A14),抛物线与y轴交于点B03),与x轴交于CD两点,点Px轴上的一个动点.

1)求此抛物线的解析式;

2)当PA+PB的值最小时,求点P的坐标.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

29.作图题:(不要求写作法)如图,ABC在平面直角坐标系中,其中,点ABC的坐标分别为A(﹣21),B(﹣45),C(﹣52).

1)作ABC关于直线lx=﹣1对称的A1B1C1,其中,点ABC的对应点分别为A1B1C1

2)写出点A1B1C1的坐标.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

30.如图,在边长为1的小正方形组成的10×10网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点ABCD分别在网格的格点上.

1)请你在所给的网格中画出四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于直线l对称,其中点A′B′C′D′分别是点ABCD的对称点;

2)在(1)的条件下,结合你所画的图形,直接写出线段A′B′的长度.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

 


参考答案与试题解析

一、选择题

1.如图,在矩形ABCD中,AB=10BC=5.若点MN分别是线段ACAB上的两个动点,则BM+MN的最小值为(  )

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

A10 B8 C5 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> D6

【考点】轴对称-最短路线问题.

【分析】B点作AC的垂线,使AC两边的线段相等,到E点,过EEF垂直ABABF点,EF就是所求的线段.

【解答】解:过B点作AC的垂线,使AC两边的线段相等,到E点,过EEF垂直ABABF点,

AC=5 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

AC边上的高为2 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> ,所以BE=4 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

∵△ABC∽△EFB

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> ,即 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

EF=8

故选B

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【点评】本题考查最短路径问题,关键确定何时路径最短,然后运用勾股定理和相似三角形的性质求得解.

 

2.如图,四边形ABCD中,C=50°B=D=90°EF分别是BCDC上的点,当AEF的周长最小时,EAF的度数为(  )

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

A50° B60° C70° D80°

【考点】轴对称-最短路线问题.

【专题】压轴题.

【分析】据要使AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BCCD的对称点A′A″,即可得出AA′E+∠A″=HAA′=50°,进而得出AEF+∠AFE=2AA′E+∠A″),即可得出答案.

【解答】解:作A关于BCCD的对称点A′A″,连接A′A″,交BCE,交CDF,则A′A″即为AEF的周长最小值.作DA延长线AH

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

∵∠C=50°

∴∠DAB=130°

∴∠HAA′=50°

∴∠AA′E+∠A″=HAA′=50°

∵∠EA′A=EAA′FAD=A″

∴∠EAA′+∠A″AF=50°

∴∠EAF=130°﹣50°=80°

故选:D

【点评】本题考查的是轴对称﹣最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出EF的位置是解题关键.

 

3.如图,直线l外不重合的两点AB,在直线l上求作一点C,使得AC+BC的长度最短,作法为:作点B关于直线l的对称点B′连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是(  )

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

A.转化思想

B.三角形的两边之和大于第三边

C.两点之间,线段最短

D.三角形的一个外角大于与它不相邻的任意一个内角

【考点】轴对称-最短路线问题.

【分析】利用两点之间线段最短分析并验证即可即可.

【解答】解:B和点B′关于直线l对称,且点Cl上,

CB=CB′

AB′lC,且两条直线相交只有一个交点,

CB′+CA最短,

CA+CB的值最小,

将轴对称最短路径问题利用线段的性质定理两点之间,线段最短,体现了转化思想,验证时利用三角形的两边之和大于第三边.

故选D

【点评】此题主要考查了轴对称最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.

 

4.如图,点PAOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,PMN周长的最小值是5cm,则AOB的度数是(  )

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

A25° B30° C35° D40°

【考点】轴对称-最短路线问题.

【专题】压轴题.

【分析】分别作点P关于OAOB的对称点CD,连接CD,分别交OAOB于点MN,连接OCODPMPNMN,由对称的性质得出PM=DMOP=OCCOA=POAPN=DNOP=ODDOB=POB,得出AOB= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> COD,证出OCD是等边三角形,得出COD=60°,即可得出结果.

【解答】解:分别作点P关于OAOB的对称点CD,连接CD

分别交OAOB于点MN,连接OCODPMPNMN,如图所示:

P关于OA的对称点为D,关于OB的对称点为C

PM=DMOP=ODDOA=POA

P关于OB的对称点为C

PN=CNOP=OCCOB=POB

OC=OP=ODAOB= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> COD

∵△PMN周长的最小值是5cm

PM+PN+MN=5

DM+CN+MN=5

CD=5=OP

OC=OD=CD

OCD是等边三角形,

∴∠COD=60°

∴∠AOB=30°

故选:B

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【点评】本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.

 

5.如图,正方形ABCD的面积为12ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为(  )

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

A <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> B2 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> C2 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> D <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【考点】轴对称-最短路线问题;正方形的性质.

【分析】由于点BD关于AC对称,所以BEAC的交点即为P点.此时PD+PE=BE最小,而BE是等边ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.

【解答】解:由题意,可得BEAC交于点P

BD关于AC对称,

PD=PB

PD+PE=PB+PE=BE最小.

正方形ABCD的面积为12

AB=2 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

∵△ABE是等边三角形,

BE=AB=2 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

故所求最小值为2 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

故选B

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【点评】此题考查了轴对称﹣﹣最短路线问题,正方形的性质,等边三角形的性质,找到点P的位置是解决问题的关键.

 

6.如图,在RtABC中,C=90°AC=6BC=8DAB上的动点,EBC上的动点,则AE+DE的最小值为(  )

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

A3+2 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> B10 C <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> D <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【考点】轴对称-最短路线问题.

【分析】作点A关于BC的对称点A′,过点A′A′DABBCAB分别于点ED,根据轴对称确定最短路线问题,A′D的长度即为AE+DE的最小值,利用勾股定理列式求出AB,再利用ABC的正弦列式计算即可得解.

【解答】解:如图,作点A关于BC的对称点A′,过点A′A′DABBCAB分别于点ED

A′D的长度即为AE+DE的最小值,AA′=2AC=2×6=12

∵∠ACB=90°BC=8AC=6

AB= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> =10

sinBAC= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

A′D=AA′•sinBAC=12× <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

AE+DE的最小值是 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

故选D

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【点评】本题考查了利用轴对称确定最短路线问题,主要利用了勾股定理,垂线段最短,锐角三角函数的定义,难点在于确定出点DE的位置.

 

7.如图,ABO的直径,AB=8,点MO上,MAB=20°N是弧MB的中点,P是直径AB上的一动点.若MN=1,则PMN周长的最小值为(  )

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

A4 B5 C6 D7

【考点】轴对称-最短路线问题;圆周角定理.

【专题】压轴题.

【分析】N关于AB的对称点N′,连接MN′NN′ON′ON,由两点之间线段最短可知MN′AB的交点P′即为PMN周长的最小时的点,根据N是弧MB的中点可知A=NOB=MON=20°,故可得出MON′=60°,故MON′为等边三角形,由此可得出结论.

【解答】解:作N关于AB的对称点N′,连接MN′NN′ON′ON

N关于AB的对称点N′

MN′AB的交点P′即为PMN周长的最小时的点,

N是弧MB的中点,

∴∠A=NOB=MON=20°

∴∠MON′=60°

∴△MON′为等边三角形,

MN′=OM=4

∴△PMN周长的最小值为4+1=5

故选:B

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【点评】本题考查的是轴对称﹣最短路径问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.

 

8.如图,MN是半径为1O的直径,点AO上,AMN=30°,点B为劣弧AN的中点.P是直径MN上一动点,则PA+PB的最小值为(  )

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

A <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> B1 C2 D2 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【考点】轴对称-最短路线问题;勾股定理;垂径定理.

【分析】作点B关于MN的对称点B′,连接OAOBOB′AB′,根据轴对称确定最短路线问题可得AB′MN的交点即为PA+PB的最小时的点,根据在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍求出AON=60°,然后求出BON=30°,再根据对称性可得B′ON=BON=30°,然后求出AOB′=90°,从而判断出AOB′是等腰直角三角形,再根据等腰直角三角形的性质可得AB′= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> OA,即为PA+PB的最小值.

【解答】解:作点B关于MN的对称点B′,连接OAOBOB′AB′

AB′MN的交点即为PA+PB的最小时的点,PA+PB的最小值=AB′

∵∠AMN=30°

∴∠AON=2AMN=2×30°=60°

B为劣弧AN的中点,

∴∠BON= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> AON= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> ×60°=30°

由对称性,B′ON=BON=30°

∴∠AOB′=AON+∠B′ON=60°+30°=90°

∴△AOB′是等腰直角三角形,

AB′= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> OA= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> ×1= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

PA+PB的最小值= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

故选:A

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【点评】本题考查了轴对称确定最短路线问题,在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍的性质,作辅助线并得到AOB′是等腰直角三角形是解题的关键.

 

9.如图,在RtABC中,ACB=90°AC=6BC=8ADBAC的平分线.若PQ分别是ADAC上的动点,则PC+PQ的最小值是(  )

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

A <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> B4 C <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> D5

【考点】轴对称-最短路线问题.

【分析】过点CCMABAB于点M,交AD于点P,过点PPQAC于点Q,由ADBAC的平分线.得出PQ=PM,这时PC+PQ有最小值,即CM的长度,运用勾股定理求出AB,再运用SABC= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> AB•CM= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> AC•BC,得出CM的值,即PC+PQ的最小值.

【解答】解:如图,过点CCMABAB于点M,交AD于点P,过点PPQAC于点Q

ADBAC的平分线.

PQ=PM,这时PC+PQ有最小值,即CM的长度,

AC=6BC=8ACB=90°

AB= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> =10

SABC= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> AB•CM= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> AC•BC

CM= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

PC+PQ的最小值为 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

故选:C

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【点评】本题主要考查了轴对称问题,解题的关键是找出满足PC+PQ有最小值时点PQ的位置.

 

二、填空题

10.如图,已知正方形ABCD边长为3,点EAB边上且BE=1,点PQ分别是边BCCD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是 3 

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【考点】轴对称-最短路线问题;正方形的性质.

【专题】计算题;压轴题.

【分析】根据最短路径的求法,先确定点E关于BC的对称点E′,再确定点A关于DC的对称点A′,连接A′E′即可得出PQ的位置;再根据相似得出相应的线段长从而可求得四边形AEPQ的面积.

【解答】解:如图1所示 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

E关于BC的对称点E′,点A关于DC的对称点A′,连接A′E′,四边形AEPQ的周长最小,

AD=A′D=3BE=BE′=1

AA′=6AE′=4

DQAE′DAA′的中点,

DQAA′E′的中位线,

DQ= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> AE′=2CQ=DC﹣CQ=3﹣2=1

BPAA′

∴△BE′P∽△AE′A′

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> ,即 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> BP= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> CP=BC﹣BP=3﹣ <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

S四边形AEPQ=S正方形ABCD﹣SADQ﹣SPCQ﹣SBEP=9﹣ <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> AD•DQ﹣ <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> CQ•CP﹣ <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> BE•BP

=9﹣ <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> ×3×2﹣ <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> ×1× <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> ×1× <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

故答案为: <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【点评】本题考查了轴对称,利用轴对称确定A′E′,连接A′E′得出PQ的位置是解题关键,又利用了相似三角形的判定与性质,图形分割法是求面积的重要方法.

 

11.如图,在边长为2的等边ABC中,DBC的中点,EAC边上一点,则BE+DE的最小值为  <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>  

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【考点】轴对称-最短路线问题;等边三角形的性质.

【分析】B关于AC的对称点B′,连接BB′B′D,交ACE,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值,故E即为所求的点.

【解答】解:作B关于AC的对称点B′,连接BB′B′D,交ACE,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值,

BB′关于AC的对称,

ACBB′互相垂直平分,

四边形ABCB′是平行四边形,

三角形ABC是边长为2

DBC的中点,

ADBC

AD= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> BD=CD=1BB′=2AD=2 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

B′GBC的延长线于G

B′G=AD= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

RtB′BG中,

BG= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> =3

DG=BG﹣BD=3﹣1=2

RtB′DG中,B′D= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

BE+ED的最小值为 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

故答案为: <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【点评】本题考查的是最短路线问题,涉及的知识点有:轴对称的性质、等边三角形的性质、勾股定理等,有一定的综合性,但难易适中.

 

12.如图,AOB=30°,点MN分别在边OAOB上,且OM=1ON=3,点PQ分别在边OBOA上,则MP+PQ+QN的最小值是  <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>  

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【考点】轴对称-最短路线问题.

【专题】压轴题.

【分析】M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.

【解答】解:作M关于OB的对称点M′,作N关于OA的对称点N′

连接M′N′,即为MP+PQ+QN的最小值.

根据轴对称的定义可知:N′OQ=M′OB=30°ONN′=60°

∴△ONN′为等边三角形,OMM′为等边三角形,

∴∠N′OM′=90°

RtM′ON′中,

M′N′= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

故答案为 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【点评】本题考查了轴对称﹣﹣最短路径问题,根据轴对称的定义,找到相等的线段,得到等边三角形是解题的关键.

 

13.在每个小正方形的边长为1的网格中.点ABCD均在格点上,点EF分别为线段BCDB上的动点,且BE=DF

(Ⅰ)如图,当BE= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> 时,计算AE+AF的值等于  <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>  

(Ⅱ)当AE+AF取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段AEAF,并简要说明点E和点F的位置如何找到的(不要求证明) 取格点HK,连接BHCK,相交于点P,连接AP,与BC相交,得点E,取格点MN连接DMCN,相交于点G,连接AG,与BD相交,得点F,线段AEAF即为所求. 

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【考点】轴对称-最短路线问题;勾股定理.

【专题】作图题;压轴题.

【分析】1)根据勾股定理得出DB=5,进而得出AF=2.5,由勾股定理得出AE= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> ,再解答即可;

2)首先确定E点,要使AE+AF最小,根据三角形两边之和大于第三边可知,需要将AF移到AE的延长线上,因此可以构造全等三角形,首先选择格点H使HBC=ADB,其次需要构造长度BP使BP=AD=4,根据勾股定理可知BH= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> =5,结合相似三角形选出格点K,根据 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> ,得BP= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> BH= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> =4=DA,易证ADF≌△PBE,因此可得到PE=AF,线段AP即为所求的AE+AF的最小值;同理可确定F点,因为ABBC,因此首先确定格点M使DMDB,其次确定格点G使DG=AB=3,此时需要先确定格点N,同样根据相似三角形性质得到 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> ,得DG= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> DM= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> ×5=3,易证DFG≌△BEA,因此可得到AE=GF,故线段AG即为所求的AE+AF的最小值.

【解答】解:(1)根据勾股定理可得:DB= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

因为BE=DF= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

所以可得AF= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> =2.5

根据勾股定理可得:AE= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> ,所以AE+AF= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

故答案为: <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

2)如图,

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

首先确定E点,要使AE+AF最小,根据三角形两边之和大于第三边可知,需要将AF移到AE的延长线上,因此可以构造全等三角形,首先选择格点H使HBC=ADB,其次需要构造长度BP使BP=AD=4,根据勾股定理可知BH= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> =5,结合相似三角形选出格点K,根据 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> ,得BP= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> BH= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> =4=DA,易证ADF≌△PBE,因此可得到PE=AF,线段AP即为所求的AE+AF的最小值;同理可确定F点,因为ABBC,因此首先确定格点M使DMDB,其次确定格点G使DG=AB=3,此时需要先确定格点N,同样根据相似三角形性质得到 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> ,得DG= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> DM= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> ×5=3,易证DFG≌△BEA,因此可得到AE=GF,故线段AG即为所求的AE+AF的最小值.

故答案为:取格点HK,连接BHCK,相交于点P,连接AP,与BC相交,得点E,取格点MN连接DMCN,相交于点G,连接AG,与BD相交,得点F,线段AEAF即为所求.

【点评】此题考查最短路径问题,关键是根据轴对称的性质进行分析解答.

 

14.如图,正方形ABCD的边长为4EBC上一点,BE=1FAB上一点,AF=2PAC上一点,则PF+PE的最小值为  <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>  

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【考点】轴对称-最短路线问题;正方形的性质.

【专题】压轴题.

【分析】E关于直线AC的对称点E′,连接E′F,则E′F即为所求,过FFGCDG,在RtE′FG中,利用勾股定理即可求出E′F的长.

【解答】解:作E关于直线AC的对称点E′,连接E′F,则E′F即为所求,

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

FFGCDG

RtE′FG中,

GE′=CD﹣BE﹣BF=4﹣1﹣2=1GF=4

所以E′F= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

故答案为: <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【点评】本题考查的是最短线路问题,熟知两点之间线段最短是解答此题的关键.

 

15.如图,AOB=30°,点MN分别是射线OAOB上的动点,OP平分AOB,且OP=6,当PMN的周长取最小值时,四边形PMON的面积为 36 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> ﹣54 

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【考点】轴对称-最短路线问题.

【专题】压轴题.

【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点MNCD上时,PMN的周长最小,此时COD是等边三角形,求得三角形PMNCOD的面积,根据四边形PMON的面积为: <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> SCOD+SPMN)求得即可.

【解答】解:分别作点P关于OAOB的对称点CD,连接CD,分别交OAOB于点MN,连接OCODPCPD

P关于OA的对称点为C,关于OB的对称点为D

PM=CMOP=OCCOA=POA

P关于OB的对称点为D

PN=DNOP=ODDOB=POB

OC=OD=OP=6COD=COA+∠POA+∠POB+∠DOB=2POA+2POB=2AOB=60°

∴△COD是等边三角形,

CD=OC=OD=6

∵∠POC=POD

OPCD

OQ=6× <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> =3 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

PQ=6﹣3 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

MQ=x,则PM=CM=3﹣x

3﹣x2﹣x2=6﹣3 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> 2,解得x=6 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> ﹣9

SPMN= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> MN×PQ

SMON= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> MN×OQ

S四边形PMON=SMON+SPMN= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> MN×PQ+ <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> MN×OQ= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> MN×OP= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> ×6 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> ﹣9×6=36 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> ﹣54

故答案为36 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> ﹣54

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【点评】此题主要考查轴对称﹣﹣最短路线问题,熟知两点之间线段最短是解答此题的关键.

 

16.在O中,ABO的直径,AB=8cm <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> MAB上一动点,CM+DM的最小值是 8 cm

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【考点】轴对称-最短路线问题;勾股定理;垂径定理.

【分析】作点C关于AB的对称点C′,连接C′DAB相交于点M,根据轴对称确定最短路线问题,点MCM+DM的最小值时的位置,根据垂径定理可得 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> ,然后求出C′D为直径,从而得解.

【解答】解:如图,作点C关于AB的对称点C′,连接C′DAB相交于点M

此时,点MCM+DM的最小值时的位置,

由垂径定理, <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> AB为直径,

C′D为直径,

CM+DM的最小值是8cm

故答案为:8

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【点评】本题考查了轴对称确定最短路线问题,垂径定理,熟记定理并作出图形,判断出CM+DM的最小值等于圆的直径的长度是解题的关键.

 

17.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是  <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>  

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【考点】轴对称-最短路线问题;正方形的性质.

【专题】计算题.

【分析】要求PE+PC的最小值,PEPC不能直接求,可考虑通过作辅助线转化PEPC的值,从而找出其最小值求解.

【解答】解:如图,连接AE

C关于BD的对称点为点A

PE+PC=PE+AP

根据两点之间线段最短可得AE就是AP+PE的最小值,

正方形ABCD的边长为2EBC边的中点,

BE=1

AE= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

故答案为: <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【点评】此题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用.根据已知得出两点之间线段最短可得AE就是AP+PE的最小值是解题关键.

 

18.如图,菱形ABCD的边长为2DAB=60°EBC的中点,在对角线AC上存在一点P,使PBE的周长最小,则PBE的周长的最小值为  <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> +1 

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【考点】轴对称-最短路线问题;菱形的性质.

【分析】连接BD,与AC的交点即为使PBE的周长最小的点P;由菱形的性质得出BPC=90°,由直角三角形斜边上的中线性质得出PE=BE,证明PBE是等边三角形,得出PB=BE=PE=1,即可得出结果.

【解答】解:连结DE

BE的长度固定,

要使PBE的周长最小只需要PB+PE的长度最小即可,

四边形ABCD是菱形,

ACBD互相垂直平分,

P′D=P′B

PB+PE的最小长度为DE的长,

菱形ABCD的边长为2EBC的中点,DAB=60°

∴△BCD是等边三角形,

菱形ABCD的边长为2

BD=2BE=1DE= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

∴△PBE的最小周长=DE+BE= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> +1

故答案为: <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> +1

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【点评】本题考查了菱形的性质、轴对称以及最短路线问题、直角三角形斜边上的中线性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.

 

19.如图,在边长为4的正方形ABCD中,EAB边上的一点,且AE=3,点Q为对角线AC上的动点,则BEQ周长的最小值为 6 

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【考点】轴对称-最短路线问题;正方形的性质.

【专题】计算题.

【分析】连接BDDE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE的最小值,进而可得出结论.

【解答】解:连接BDDE

四边形ABCD是正方形,

B与点D关于直线AC对称,

DE的长即为BQ+QE的最小值,

DE=BQ+QE= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> =5

∴△BEQ周长的最小值=DE+BE=5+1=6

故答案为:6

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【点评】本题考查的是轴对称﹣最短路线问题,熟知轴对称的性质是解答此题的关键.

 

20.如图,菱形ABCD中,对角线AC=6BD=8MN分别是BCCD的中点,P是线段BD上的一个动点,则PM+PN的最小值是 5 

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【考点】轴对称-最短路线问题;勾股定理的应用;平行四边形的判定与性质;菱形的性质.

【专题】几何图形问题.

【分析】M关于BD的对称点Q,连接NQ,交BDP,连接MP,此时MP+NP的值最小,连接AC,求出CPPB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.

【解答】解:作M关于BD的对称点Q,连接NQ,交BDP,连接MP,此时MP+NP的值最小,连接AC

四边形ABCD是菱形,

ACBDQBP=MBP

QAB上,

MQBD

ACMQ

MBC中点,

QAB中点,

NCD中点,四边形ABCD是菱形,

BQCDBQ=CN

四边形BQNC是平行四边形,

NQ=BC

四边形ABCD是菱形,

CP= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> AC=3BP= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> BD=4

RtBPC中,由勾股定理得:BC=5

NQ=5

MP+NP=QP+NP=QN=5

故答案为:5

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【点评】本题考查了轴对称﹣最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P的位置.

 

21.在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A10),B20)是x轴上的两点,则PA+PB的最小值为  <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>  

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【考点】轴对称-最短路线问题;一次函数图象上点的坐标特征.

【分析】利用一次函数图象上点的坐标性质得出OA′=1,进而利用勾股定理得出即可.

【解答】解:如图所示:作A点关于直线y=x的对称点A′,连接A′B,交直线y=x于点P

此时PA+PB最小,

由题意可得出:OA′=1BO=2PA′=PA

PA+PB=A′B= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

故答案为: <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【点评】此题主要考查了利用轴对称求最短路线以及一次函数图象上点的特征等知识,得出P点位置是解题关键.

 

22.菱形ABCD的边长为2ABC=60°EAD边中点,点P是对角线BD上的动点,当AP+PE的值最小时,PC的长是  <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>  

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【考点】轴对称-最短路线问题;菱形的性质.

【专题】几何综合题.

【分析】作点E关于直线BD的对称点E′,连接AE′,则线段AE′的长即为AP+PE的最小值,再由轴对称的性质可知DE=DE′=1,故可得出AE′D是直角三角形,由菱形的性质可知PDE′= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> ADC=30°,根据锐角三角函数的定义求出PE的长,进而可得出PC的长.

【解答】解:如图所示,

作点E关于直线BD的对称点E′,连接AE′,则线段AE′的长即为AP+PE的最小值,

菱形ABCD的边长为2EAD边中点,

DE=DE′= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> AD=1

∴△AE′D是直角三角形,

∵∠ABC=60°

∴∠PDE′= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> ADC=30°

PE′=DE′•tan30°= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

PC= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

故答案为: <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【点评】本题考查的是轴对称﹣最短路线问题,熟知菱形的性质及锐角三角函数的定义是解答此题的关键.

 

23.如图,在平面直角坐标系中,已知点A23),点B(﹣21),在x轴上存在点PAB两点的距离之和最小,则P点的坐标是 (﹣10) 

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【考点】轴对称-最短路线问题;坐标与图形性质.

【专题】压轴题.

【分析】A关于x轴的对称点C,连接BCx轴于P,则此时AP+BP最小,求出C的坐标,设直线BC的解析式是y=kx+b,把BC的坐标代入求出kb,得出直线BC的解析式,求出直线与x轴的交点坐标即可.

【解答】解:作A关于x轴的对称点C,连接BCx轴于P,则此时AP+BP最小,

A点的坐标为(23),B点的坐标为(﹣21),

C2,﹣3),

设直线BC的解析式是:y=kx+b

BC的坐标代入得: <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

解得 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

即直线BC的解析式是y=﹣x﹣1

y=0时,﹣x﹣1=0

解得:x=﹣1

P点的坐标是(﹣10).

故答案为:(﹣10).

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【点评】本题考查了一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,轴对称﹣最短路线问题的应用,关键是能找出P点,题目具有一定的代表性,难度适中.

 

三、解答题

24.如图,在平面直角坐标系中,已知点A03),B24),C40),D2,﹣3),E0,﹣4).写出DCB关于y轴对称点FGH的坐标,并画出FGH点.顺次而平滑地连接ABCDEFGHA各点.观察你画出的图形说明它具有怎样的性质,它象我们熟知的什么图形?

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【考点】作图-轴对称变换.

【专题】作图题.

【分析】关于y轴对称的点的坐标的特点是:纵坐标相等,横坐标互为相反数,得出FGH的坐标,顺次连接各点即可.

【解答】解:由题意得,F(﹣2,﹣3),G(﹣40),H(﹣24),

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

这个图形关于y轴对称,是我们熟知的轴对称图形.

【点评】本题考查了轴对称作图的知识,解答本题的关键是掌握关于y轴对称的点的坐标的特点,及轴对称图形的特点.

 

25.如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB和直线MN,点ABMN均在小正方形的顶点上.

1)在方格纸中画四边形ABCD(四边形的各顶点均在小正方形的顶点上),使四边形ABCD是以直线MN为对称轴的轴对称图形,点A的对称点为点D,点B的对称点为点C

2)请直接写出四边形ABCD的周长.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【考点】作图-轴对称变换;勾股定理.

【分析】1)根据四边形ABCD是以直线MN为对称轴的轴对称图形,分别得出对称点画出即可;

2)根据勾股定理求出四边形ABCD的周长即可.

【解答】解;(1)如图所示:

2)四边形ABCD的周长为:AB+BC+CD+AD= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> +2 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> + <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> +3 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> =2 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> +5 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【点评】此题主要考查了勾股定理以及轴对称图形的作法,根据已知得出AB点关于MN的对称点是解题关键.

 

26.在图示的方格纸中

1)作出ABC关于MN对称的图形A1B1C1

2)说明A2B2C2是由A1B1C1经过怎样的平移得到的?

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【考点】作图-轴对称变换;作图-平移变换.

【专题】作图题.

【分析】1)根据网格结构找出点ABC关于MN的对称点A1B1C1的位置,然后顺次连接即可;

2)根据平移的性质结合图形解答.

【解答】解:(1A1B1C1如图所示;

2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【点评】本题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置以及变化情况是解题的关键.

 

27.如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点EBC边上,且点E在小正方形的顶点上,连接AE

1)在图中画出AEF,使AEFAEB关于直线AE对称,点F与点B是对称点;

2)请直接写出AEF与四边形ABCD重叠部分的面积.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【考点】作图-轴对称变换.

【专题】作图题.

【分析】1)根据AE为网格正方形的对角线,作出点B关于AE的对称点F,然后连接AFEF即可;

2)根据图形,重叠部分为两个直角三角形的面积的差,列式计算即可得解.

【解答】解:(1AEF如图所示;

2)重叠部分的面积= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> ×4×4﹣ <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> ×2×2

=8﹣2

=6

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【点评】本题考查了利用轴对称变换作图,熟练掌握网格结构并观察出AE为网格正方形的对角线是解题的关键.

 

28.如图,已知抛物线的顶点为A14),抛物线与y轴交于点B03),与x轴交于CD两点,点Px轴上的一个动点.

1)求此抛物线的解析式;

2)当PA+PB的值最小时,求点P的坐标.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【考点】轴对称-最短路线问题;待定系数法求二次函数解析式.

【专题】数形结合.

【分析】1)设抛物线顶点式解析式y=ax﹣12+4,然后把点B的坐标代入求出a的值,即可得解;

2)先求出点B关于x轴的对称点B′的坐标,连接AB′x轴相交,根据轴对称确定最短路线问题,交点即为所求的点P,然后利用待定系数法求一次函数解析式求出直线AB′的解析式,再求出与x轴的交点即可.

【解答】解:(1抛物线的顶点为A14),

设抛物线的解析式y=ax﹣12+4

把点B03)代入得,a+4=3

解得a=﹣1

抛物线的解析式为y=﹣x﹣12+4

2)点B关于x轴的对称点B′的坐标为(0,﹣3),

由轴对称确定最短路线问题,连接AB′x轴的交点即为点P

设直线AB′的解析式为y=kx+bk0),

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

解得 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

直线AB′的解析式为y=7x﹣3

y=0,则7x﹣3=0

解得x= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

所以,当PA+PB的值最小时的点P的坐标为( <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>0).

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【点评】本题考查了轴对称确定最短路线问题,待定系数法求二次函数解析式,待定系数法求一次函数解析式,(1)利用顶点式解析式求解更简便,(2)熟练掌握点P的确定方法是解题的关键.

 

29.作图题:(不要求写作法)如图,ABC在平面直角坐标系中,其中,点ABC的坐标分别为A(﹣21),B(﹣45),C(﹣52).

1)作ABC关于直线lx=﹣1对称的A1B1C1,其中,点ABC的对应点分别为A1B1C1

2)写出点A1B1C1的坐标.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【考点】作图-轴对称变换.

【专题】作图题.

【分析】1)根据网格结构找出点ABC关于直线l的对称点A1B1C1的位置,然后顺次连接即可;

2)根据平面直角坐标系写出点A1B1C1的坐标即可.

【解答】解:(1A1B1C1如图所示;

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>


2A101),B125),C132).

【点评】本题考查了利用轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.

 

30.如图,在边长为1的小正方形组成的10×10网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点ABCD分别在网格的格点上.

1)请你在所给的网格中画出四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于直线l对称,其中点A′B′C′D′分别是点ABCD的对称点;

2)在(1)的条件下,结合你所画的图形,直接写出线段A′B′的长度.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【考点】作图-轴对称变换.

【分析】1)根据轴对称的性质,找到各点的对称点,顺次连接即可;

2)结合图形即可得出线段A′B′的长度.

【解答】解:(1)所作图形如下:

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

2A'B'= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a> = <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/249/" title="对称" class="c1" target="_blank">对称</a> <a href="/tags/849/" title="轴对称" class="c1" target="_blank">轴对称</a>

【点评】本题考查了轴对称变换的知识,要求同学们掌握轴对称的性质,能用格点三角形求线段的长度.