【330085】18.1 第2课时 勾股定理的应用
18.1勾股定理
第2课时 勾股定理的应用
教学目标
1.会用勾股定理解决一些简单的实际问题;(重点)
2.通过对实际问题的探讨,培养学生分析问题和解决问题的能力.
教学过程
一个门框的宽为1.5m,高为2m,如图所示,一块长3m,宽2.2m的薄木板能否从门框内通过?为什么?
二、合作探究
探究点:勾股定理的应用
【类型一】 勾股定理的直接应用
如图,在离水面高度为5m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13m,此人以0.5m每秒的速度收绳.问6秒后船向岸边移动了多少(假设绳子是直的,结果保留根号)?
解析:开始时,AC=5m,BC=13m,即可求得AB的值,6秒后根据BC,AC长度即可求得AB的值,然后解答即可.
解:在Rt△ABC中,BC=13m,AC=5m,则AB==12m,6秒后,B′C=10m,则AB′==5m,则船向岸边移动距离为(12-5)m.
方法总结:本题直接考查勾股定理在直角三角形中的运用,求出6秒后AB的长度是解题的关键.
【类型二】 利用勾股定理解决方位角问题
如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了100m到达B点,然后再沿北偏西30°方向走了100m到达目的地C点,求出A、C两点之间的距离.
解析:根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.
解:∵AD∥BE,∴∠ABE=∠DAB=60°.∵∠CBF=30°,∴∠ABC=180°-∠ABE-∠CBF=180°-60°-30°=90°.在Rt△ABC中,AB=100m,BC=100m,∴AC===200(m),∴A、C两点之间的距离为200m.
方法总结:先确定是直角三角形,根据各边长,用勾股定理可求出AC的长.
【类型三】 利用勾股定理解决最短距离问题
如图,长方体的长BE=15cm,宽AB=10cm,高AD=20cm,点M在CH上,且CM=5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点M,需要爬行的最短距离是多少?
解:分三种情况比较最短距离:如图①所示,AM==5(cm);如图②所示,AM==25(cm);如图③所示,AM==5(cm).∵5cm>5cm>25cm,
∴第二种短些,此时最短距离为25cm.
答:需要爬行的最短距离是25cm.
方法总结:因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况:前面和右面展开,前面和上面展开,左面和上面展开,从而进行比较取其最小值即可.
【类型四】 勾股定理与方程思想、数形结合思想的应用
如图,在树上距地面10m的D处有两只猴子,它们同时发现地面上C处有一筐水果,一只猴子从D处向上爬到树顶A处,然后利用拉在A处的滑绳AC滑到C处,另一只猴子从D处先滑到地面B,再由B跑到C,已知两猴子所经过的路程都是15m,求树高AB.
解析:Rt△ABC中,∠B=90°,则满足AB2+BC2=AC2.设BC=am,AC=bm,AD=xm,根据两只猴子经过的路程一样可得10+a=x+b=15解方程组可以求x的值,即可计算树高AB=10+x.
解:Rt△ABC中,∠B=90°,设BC=am,AC=bm,AD=xm,则10+a=x+b=15.∴a=5,b=15-x.又在Rt△ABC中,由勾股定理得(10+x)2+a2=b2,∴(10+x)2+52=(15-x)2,解得x=2,即AD=2m,∴AB=AD+DB=2+10=12(m).
答:树高AB为12m.
方法总结:勾股定理表达式中有三个量,如果条件中只有一个已知量,通常需要巧设未知数,灵活地寻找题中的等量关系,然后利用勾股定理列方程求解.
三、板书设计
教学反思
通过观察图形,探索图形间的关系,培养学生的空间观念.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.在利用勾股定理解决实际问题的过程中,感受数学学习的魅力.
- 1【330924】综合平移的坐标表示
- 2【330923】专题练习2:用计算器求平均数
- 3【330921】轴对称的坐标表示
- 4【330922】专题练习1:用计算器求平均数
- 5【330920】中心对称和中心对称图形
- 6【330919】直角三角形全等的判定
- 7【330918】直角三角巷的性质和判定(Ⅰ)
- 8【330917】正方形
- 9【330916】正比例函数的图象和性质
- 10【330915】长丰县2018-2019学年度第二学期期末考试八年级数学参考答案
- 11【330914】用待定系数法确定一次函数表达式
- 12【330913】一次函数知识点总结
- 13【330911】一次函数与一次方程的联系
- 14【330912】一次函数知识点归纳
- 15【330908】新人教版初中数学八年级下册同步练习试题及答案_第20章 数据的分析(22页)
- 16【330910】一次函数的图象和性质
- 17【330909】一次函数
- 18【330907】新人教版八年级数学下第18章《平行四边形》单元试卷
- 19【330906】新人教版八年级数学下第16章《二次根式》单元试卷
- 20【330904】湘教版八年级数学下《第5章数据的频数分布》单元试卷含答案
- 【330905】湘教版八年级数学下册全册综合测试题
- 【330903】湘教版八年级数学下《第3章图形与坐标》单元试卷含答案
- 【330901】湘教版八年级数学下《第1章直角三角形》单元试卷含答案
- 【330902】湘教版八年级数学下《第2章四边形》单元试卷含答案
- 【330900】五种类型一次函数解析式的确定
- 【330899】同步练习试题及答案_第19章 一次函数(10页)
- 【330898】同步练习试题及答案_第18章 平行四行形(40页)
- 【330897】同步练习试题及答案_第17章 勾股定理(20页)
- 【330896】同步练习试题及答案_第16章 二次根式(19页)
- 【330894】思想方法专题:直角三角形中的思想方法
- 【330895】特殊平行四边形知识点归纳
- 【330893】思想方法专题:矩形中的折叠问题
- 【330892】思想方法专题:勾股定理中的思想方法
- 【330891】数学培优辅差工作计划3
- 【330890】数学培优辅差工作计划2
- 【330889】数学培优辅差工作计划1
- 【330888】三角形的中位线
- 【330887】人教版数学八年级上同期末达标检测卷2
- 【330886】人教版数学八年级上同期末达标检测卷1
- 【330885】人教版数学八年级上册期中达标测试卷