【329793】6.2 第2课时 利用四边形对角线的性质判定平行四边形
6.2 平行四边形的判定
第2课时 平行四边形的判定定理3与两平行线间的距离
【学习内容】平行四边形的判定(P143—P145页)
【学习目标】1、理解平行四边形的另一种判定方法,并学会简单运用。2、在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展逻辑思维能力和推理论证的表达能力。
【学习重难点】重点:平行四边形判定方法理解运用;难点:平行四边形判
定方法运用
【自研课】定向导学 (15分钟)
复习引入
1.平行四边形的定义是什么?
平行四边形的定义: 的四边形,叫做平行四边形
2.判定四边形是平行四边形的方法有哪些?
(
1)两组对边分别
的四边形是平行四边形.
(2)两组对边 的四边形是平行四边形.
(3)一组对边 的四边形是平行四边形.
探究
活动:
工具:两根不同长度的细木条.
动手:能否合理摆放这两根细木条,使得连接四个顶点后成为平行四边形?
思考:你能说明你得到的四边形是平行四边形吗?
已
知:如图,四边形ABCD的对角线AC、BD相交于点O,并且OA=OC,OB=OD.
求证:四边形ABCD是平行四边形.
已
求证:四边形BFDE是平行四边形
【训练课】(时段:晚自习,时间20分钟)
基础题:
1、如图,四边形ABCD中,AC、BD相交于点O,若OA=OC,OB=OD,则四边形ABCD是______ ___ ,
根据是 。
A D
O
B C
2、四边形ABCD中,AC、BD相交于点O,且OA=OC,如果要使四边形ABCD是平行四边形,则还需补充的条件是( )
A. AC⊥BD B. OA=OB C.OC=OD D.OB=OD
3、下列条件中,能判定四边形是平行四边形的是( )
A. 一组对角相等 B. 对角线互相平分
C. 一组对边相等 D. 对角线互相相等
4、如图,在平行四边形ABCD中,O是AC,BD的交点,点E,F,G,H分别是AO,BO,CO,DO的中点,四边形EFGH是平行四边形吗?说说你的理由.
A D
E O H
F G
B C
发展题
5、下列条件中不能确定四边形ABCD是平行四边形的是( )
A.AB=CD,AD∥BC B.AB=CD,AB∥CD
C.AB∥CD,AD∥BC D.AB=CD,AD=BC
6、A、B、C、D在同一平面内,从①AB∥CD;②AB=CD;③BC=AD;④BC∥AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有( )
A.3种 B.4种 C.5种 D.6种
提高题:
7、已知如图:在
ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC与EF是否互相平分?说明理由.
- 1【330924】综合平移的坐标表示
- 2【330923】专题练习2:用计算器求平均数
- 3【330921】轴对称的坐标表示
- 4【330922】专题练习1:用计算器求平均数
- 5【330920】中心对称和中心对称图形
- 6【330919】直角三角形全等的判定
- 7【330918】直角三角巷的性质和判定(Ⅰ)
- 8【330917】正方形
- 9【330916】正比例函数的图象和性质
- 10【330915】长丰县2018-2019学年度第二学期期末考试八年级数学参考答案
- 11【330914】用待定系数法确定一次函数表达式
- 12【330913】一次函数知识点总结
- 13【330911】一次函数与一次方程的联系
- 14【330912】一次函数知识点归纳
- 15【330908】新人教版初中数学八年级下册同步练习试题及答案_第20章 数据的分析(22页)
- 16【330910】一次函数的图象和性质
- 17【330909】一次函数
- 18【330907】新人教版八年级数学下第18章《平行四边形》单元试卷
- 19【330906】新人教版八年级数学下第16章《二次根式》单元试卷
- 20【330904】湘教版八年级数学下《第5章数据的频数分布》单元试卷含答案
- 【330905】湘教版八年级数学下册全册综合测试题
- 【330903】湘教版八年级数学下《第3章图形与坐标》单元试卷含答案
- 【330901】湘教版八年级数学下《第1章直角三角形》单元试卷含答案
- 【330902】湘教版八年级数学下《第2章四边形》单元试卷含答案
- 【330900】五种类型一次函数解析式的确定
- 【330899】同步练习试题及答案_第19章 一次函数(10页)
- 【330898】同步练习试题及答案_第18章 平行四行形(40页)
- 【330897】同步练习试题及答案_第17章 勾股定理(20页)
- 【330896】同步练习试题及答案_第16章 二次根式(19页)
- 【330894】思想方法专题:直角三角形中的思想方法
- 【330895】特殊平行四边形知识点归纳
- 【330893】思想方法专题:矩形中的折叠问题
- 【330892】思想方法专题:勾股定理中的思想方法
- 【330891】数学培优辅差工作计划3
- 【330890】数学培优辅差工作计划2
- 【330889】数学培优辅差工作计划1
- 【330888】三角形的中位线
- 【330887】人教版数学八年级上同期末达标检测卷2
- 【330886】人教版数学八年级上同期末达标检测卷1
- 【330885】人教版数学八年级上册期中达标测试卷